

The Kennebec, Sheepscot and Damariscotta River Estuaries: Seasonal Oceanographic Data

by

L.M. Mayer ${ }^{1}$
D.W. Townsend ${ }^{2}$
N.R. Pettigrew ${ }^{2}$
T.C. Loder ${ }^{3}$
M. W. Wong ${ }^{2}$
D. Kistner-Morris ${ }^{2}$
A.K. Laursen ${ }^{1}$
A. D. Schoudel ${ }^{3}$
C. Conairis ${ }^{3}$
J. Brown ${ }^{4}$
C. Newell ${ }^{5}$

1/ University of Maine
Department of Oceanography
Darling Marine Center
Walpole, ME 04573
University of New Harmpshire EOS
Morse Hall
Durham, NH 03824
5/ Great Eastern Mussel Farms
P.O. Box 141

Tenents Harbor, ME 04543

2/ University of Maine
Department of Oceanography
5741 Libby Hall
Oronc, ME 04469
4t Bigelow Laboratory for Ocean Sciences
P.O. Box 475
W. Boothbay Harbor, ME 04575

University of Maine, Department of Oceanography Technical Report No. 9601 June 1996

INTRODUCTION

General

This report presents results of a University of Maine/University of New Hampshire Sea Grant-sponsored research project that involved survey cruises in three estuaries of the midcoast Maine region: the Damariscotta, Sheepscot and Kennebec River estuaries. The purpose of the study was to assess the role of varying river water discharge among the three systems on the hydrography, nutrient regimes, planktonic populations, and suspended particulates. The three estuaries provided a natural "experiment" because river input to each varies while most other variables (e.g., climate morphometry, tidal feed water) do not.

The study comprised eight survey cruises over a 1.5 year period. Different types of cruises were conducted. One series combined general hydrographic, biological, chemical, and particulate measurements, and were conducted in September 1993 and February, May, June, July, and August 1994. These cruises occupied each estuary for one day, and all three estuaries were sampled over three consecutive days. Physical data on detailed hydrography and acoustic Doppler current meter measurements were made simultaneously from a second small boat on two of these sample periods: May and September 1994. Additional current meter measurements were made using short-term (ca. 24 hrs) mooring deployments of an Inter Ocean S4 current meter. In September 1995, we performed a more complete survey of the Kennebec estuary over a two day period, where the above operations were performed from the same boat. In addition to the estuary survey cruises, we sampled water from the shores of the three estuaries during the winter-spring period in 1994 in order to document the onset of the spring phytoplarkton bloom. Additional shoreside water samples were collected from the Kennebec from March to July 1994, for nutrient analyses only.

This report includes summaries of the data collected on all cruises, as well as a brief overview of the significance of the results. More in-depth interpretations of different aspects of the data can be found in three M.S. theses recently completed (Laursen, 1995; Wong, 1996; Schoudel, 1996); further publications with interpretative analysis of the data are in preparation and will be available from study participants in the future. The data presented here can be obtained in electronic form from the authors for a nominal charge to cover expenses.

Background on the Three Estuarine Systems

The Damariscotta estuary is a drowned river valley typical of the central Maine coast (Fig. 1). It is narrow and relatively deep, with depressions greater than 30 m in its upper reaches, and it extends approximately 30 km from its mouth to the source of fresh water (Damariscota Lake). The freshwater discharge is very low, and varies between about 1 and $3 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ (McAlice, 1977). Prior to this report, information on the hydrography of the Damariscotta was limited to the survey work by McAlice (1977; 1979). McAlice (1977) reported that the estuary thermally stratifies seasonally at the upper reaches while tidal mixing maintains a well-mixed condition toward the seaward end. The mean tidal range is about 3 m . McAlice's (1977) current meter measurements demonstrated that the Damariscotta exhibits a classical two-layered estuarine
circulation, with fresher water flowing seaward at the surface, and a compensatory upstream flow of higher salinity water beneath. Except during the spring freshet, temperature exerts more control over vertical water column stability during the warmer months than does salinity.

McAlice (1979) presented a long-term record of nutrient data for the Damariscotta collected at a station half way up the estuary. He reported nitrate values that fluctuated from undetectable levels to an average of $6-9 \mu \mathrm{M} \mathrm{NO}_{3} \div \mathrm{N}$. Interestingly, his long-term record, from 1970 to 1977, is suggestive of a gradual increasing trend in wintertime nitrate concentrations after 1974.

Several investigators have studied the plankton of the Damariscotta estuary as part of their graduate thesis research at the University of Maine (Lee, 1975; Cura, 1981; Townsend, 1981; and Sanders, 1987). Cura (1981) and Townsend (1981; 1983) reported on seasonal patterns of phytoplankton and zooplankton in the Damariscotta estuary as related to physical structure. They showed that late-winter phytoplankton blooms began in late February and early March during their surveys, which they suggested were triggered when the average in situ light intensity exceeded ca. $40 \mathrm{Ly} \mathrm{d}^{-1}$, and that vertical water column stratification was unimportant at that time of year. Phytoplankton chlorophyll concentrations in the Damariscotta reach about $10 \mu \mathrm{~g} \mathrm{~L}^{-1}$ during the spring diatom bloom (Cura, 1981; Townsend, 1984), in agreement with the nitrate available, but chlorophyll concentrations from dinoflagellate blooms in summer may exceed 50 $\mu \mathrm{g} \mathrm{L}^{-1}$ (Incze and Yentsch, 1981). No data other than secchi disk depths were available for light attenuation prior to our surveys.

The Sheepscot estuary is also a drowned river valley and is adjacent to the Damariscotta (Fig. 1). It extends approximately 35 km from the seaward end to a dam at its head. The source of freshwater is the Sheepscot River, which has a freshwater discharge that averages about $15 \mathrm{~m}^{3}$ s^{-1} during the spring runoff period, to about $5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ in late summer - this is about one order of magnitude greater than the Damariscota. Data on the hydrography of the Sheepscot estuary have been reported by Stickney (1959), Garside et al. (1978) and McAlice (1977). Garside et al. (1978) reported that the two-layered estuarine circulation in the Sheepscot was primarily responsible for bringing inorganic nutrients from the Gulf of Maine into the mouth of the estuary; this nitrogen source satisfied the requirements for their estimates of phytoplankton production in the system. They concluded that the level of nutrients entering from fresh water were insignificant. They also reported summertime phytoplankton chlorophyll concentrations exceeding $4 \mu \mathrm{~g} \mathrm{~L}{ }^{-1}$, and that the 1% surface PAR (photosynthetically active radiation) ranged from $5-15 \mathrm{~m}$, indicating relatively high light transparency in relation to other estuaries.

Additional historical information on the nutrient regime in the Sheepscot estuary can be found in McAlice et al. (1978) for surface and bottom waters at two stations: one near Wiscasset, for which nutrient levels are reported for the period 1969 to 1977; the other station was approximately 10 miles north of the mouth of Sheepscot Bay, where nutrients were measured from 1974 to 1977 (see Fig. 1). The concentrations of nitrate plus nitrite showed a rough seasonal cycle of low values in summer $(0-4 \mu \mathrm{M}-\mathrm{N})$ to highest values in winter $(8-12 \mu \mathrm{M}-\mathrm{N})$, but that these began to increase after 1974, with winter values exceeding $12 \mu \mathrm{M}$. This increase, as McAlice et al. (1978) point out, was remarkably similar to the increase in the Damariscotta estuary over the same period (McAlice, 1979), though no explanation was offered.

In comparison to the Damariscotta and Sheepscot, almost no data existed for the Kennebec estuary prior to 1993. Like the Damariscotta and Sheepscot estuaries, the Kennebec is also a drowned river valley that extends approximately 35 km from the mouth to Merrymeeting

Bay, where the Androscoggin and Kennebec Rivers converge. The estuary thus receives fresh water from both the Androscoggin and Kennebec Rivers; their combined discharges range from a low of about $150 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ in late summer to $>600 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ during the period of peak spring runoff this is an order of magnitude greater than the Sheepscot, and two orders of magnitude greater than the Damariscotta. The only historical literature we are aware of that includes data on the hydrography of the Kennebec estuary is a technical report by Francis et al. (1953). They present the results of turbulence measurements in the Kennebec, and give some data on density differences in the upper $12-13 \mathrm{~m}$ (they report a density difference of 2 sigma-t units between 10 and 40 feet depth). There have been no studies of the plankton, nutrients or light field in the Kennebec prior to the work we report here.

METHODOLOGY AND ORGANIZATION OF THE REPORT

As outlined briefly in the introduction, our field measurements in each of the three estuaries, the Kennebec, Sheepscot and Damariscotta, included different types of surveys. One concentrated on detailed, cross-channel hydrographic and velocity surveys using a CTD and an acoustic Doppler current profiler. These surveys were performed on a small boat at several sections repeatedly over one complete semi-diumal tidal cycle. Data are included here for the May and September 1994 surveys. We also conducted longitudinal surveys at $7-10$ stations in each estuary, from the mouth to the head, in order to describe the basic hydrography, biology and chemistry using the University of New Hampshire's coastal research vessel, the R/V Gulf Challenger. A total of six of these surveys were conducted: 26 Sept. 1993, 9 Feb. 1994, 5 May 1994, 9 June 1994, 5 July 1994, and 1 Sept. 1994. An additional survey was made of the Kennebec estuary only on 16-17 Sept. 1995; this survey included both sets of measurements discussed above. Finally, data were obtained from water samples collected from shore during the winter-spring period of 1994 in order to document the development of the spring phytoplankton bloom, and from March to July in the Kennebec only, to follow nutrient concentrations.

Details of the methods used in each of the surveys and particulars of each of the analyses are given in the body of the report as sections preceeding each set of data. The organization of the report in as follows:

Table Group A
Table Group B
Table Group C
Table Group D
Figure Group A
Figure Group B
Figure Group C
Figure Group D

Biogeochemical and phytoplankton data from survey cruises; Suspended particulate matter size composition;
Shoreside sample data (chlorophyll and nutrients), February to April 1994;
Kennebec shoreside nutrient samples, March to July 1994;
Vertical section contour plots;
Cross-channel temperature, salinity and density profiles, May and September 1994, and September 1995;
Acoustic Doppler current profiles, May and September 1994, and September 1995;
S4 current meter data.

PRELIMINARY FINDINGS AND THEIR IMPLICATIONS

As predicted, the three estuarine systems show varying influences from the rivers of differing size flowing into them. The Kennebec is a partially mixed estuary with a large prism of fresh water toward its head. The high river input coupled with high tidal flushing leads to relatively short water residence times of a few days. The Sheepscot and Damariscotta show signs of acting more like large tidal coves, with longer residence times due to lack of flushing by large volumes of river water. Stratification in these systems varies considerably over the course of the year, and it appears to be strongly influenced by local estuarine morphology as well as simple water budget terms.

Nutrient profiles in these estuaries show strong evidence for the importance of an oceanic source. Removal from the water column of these oceanic nutrients within the estuaries is evident in proceeding from the mouth to the upstream head of these systems, especially in the Sheepscot and Damariscotta. he estuaries are therefore acting as powerful reaction zones for Gulf of Maine water, providing conditions by which the Gulf-derived nutrient load is effectively converted to living biomass.

The river waters themselves act as nutrient sources only in places and times of high river flow, meaning the Kennebec during most of the year, and the Sheepscot occasionally (river flow in the Damariscotta is lowest among the three systems, and its freshwater nutrient loads are of minor importance). The river waters seem to be particularly important as sources of silicate, as compared with nitrogen or phosphorus, implying that river flow may be especially significant for phytoplankton speciation (e.g., diatoms vs. dinoflagellates) in these systems. The Kennebec exhibits a surprisingly strong "internal" nitrogenous nutrient source which appears to be derived from nitrification of organic material delivered to the estuary from up river. This excess nitrogen elevates the dissolved inorganic nitrogen "DIN" to phosphate ratios, up to 25-35 near Bath. However, coastal ocean water has DNN/P ratios of 5-10 for most of the year, so that this system may be shifted from nitrogen-limitation at the coastal end, to phosphorus-limitation toward the head.

The absorption of light (PAR) with depth in the water column by the dissolved organic matter showed the expected inverse correlation with salinity, demonstrating the importance of riverine input to this form of light attenuation. Thus we see that light attenuation coefficients are greatest in the Kennebec and least in the Damariscotta.

The conversion of plant nutrients into phytoplankton biomass, and thence into organic matter of use to animal filter feeders, generally mimors the disappearance of nutrients. The landward ends of the Sheepscot and Damariscotta estuaries are, in some seasons (May, June September), regions of relatively high standing stocks of plankton compared with the seaward ends, and this pattern corresponds to the siting of the most productive aquaculture lease sites in the Damariscotta. At other times (February, July, August), when freshwater discharge is least, we find that standing stocks are greatest at the seaward ends of the estuaries.

The greatest standing stock of phytoplankton is in the Damariscotta, followed by the Kennebec and Sheepscot which are similar to one another with respect to cell densities, though there are clearly seasonal differences in the magnitudes of these patterns. Part of the differences in cell densities among the three estuaries may be related to the flushing of phytoplankton populations from the systems; this is especialiy evident in the Kennebec (which has the greatest freshwater runoff), where the greatest cell densities are at the seaward end, with very low
densities upstream. We have found that diatoms are the dominant forms of phytoplankton in all three estuaries, and that densities of dinoflagellates are on the order of 10% those of diatoms. Detailed examinations of the plant pigments by high performance liquid chromatography (HPLC) corroborate the cell count data: we found very little peridinin, the pigment commonly used as a marker for dinoflagellates.

The Sheepscot estuary appears unusually incapable of converting its considerable stock of imported nutrients (from the Gulf of Maine) into phytoplankton standing stock. We observed this pattern not only from our survey cruise results, but also from the timing of the spring bloom, which was retarded in the Sheepscot relative to the Damariscotta. The Damariscotta estuary generally has much greater algal standing stocks than the Sheepscot, in spite of similar levels of plant nutrients. We note that this pattern is consistent with the lack of successful bivalve aquaculture sites in the Sheepscot.

The distribution of protein in the suspended particulates, which acts as a marker for digestible food available for filter-feeding bivalves, closely follows the phytoplankton populations. This correspondence indicates that phytoplankton production is primarily responsible for food available to shellfish aquaculture. Nevertheless, the ratios of protein to algal matter are high enough to imply that live phytoplankton are not the sole food type, but rather that detritus likely deriving from the phytoplankton are also of importance. Our use of a new method of assessing the quality of the protein, based on the kinetics of its degradation, shows that most of this protein material is available to bivalves.

Suspended particulate distributions generally have maxima at the landward ends of the three systems. In each case this particulate material appears to originate from within the estuary, probably by resuspension in the Sheepscot and Damariscotta but perhaps from human sources in the Kennebec.

REFERENCES

Anderson, F.E. and L.M. Mayer. 1986. The interaction of tidal currents on a disturbed intertidal bottom with a resulting change in particulate matter quantity, texture, and food quality. Est. Coastal Shelf Sci. 22:19-29.
Cura, J. 1981. Physical and biological factors affecting phytoplankton growth and seasonal succession in the Damariscotta River estuary. Ph.D. Diss. University of Maine.
Denant, V., A. Saliot, and R.F.C. Mantoura. 1991. Distribution of algal chiorophyll and carotenoid pigments in a stratified estuary: the Krka River, Adriatic Sea. Mar. Chem. 32:285-297.
Francis, J.R.D., H. Stommel, H.G. Farmer and D. Parsons, Jr. 1953. Observations of turbulent mixing processes in a tidal estuary. Woods Hole Oceanographic Institution Ref. No. 5322. 28 pp .

Garside, C., G. Hull and C.S. Yentsch. 1978. Coastal source waters and their role as a nitrogen source for primary production in an estuary in Maine. pp. 565-575. In: M.L. Wiley (ed.). Estuarine Interactions. Academic Press, New York.
Glibert, P.M. and T.C. Loder. 1977. Automated analysis of nutrients in seawater: A manual of techniques. WHOI Tech. Rep. 77-47, 46 pp.
Incze, L.S. and C.M. Yentsch. 1981. Stable density fronts and dinoflagellate patches in a tidal
estuary. Est. Coastal Shelf Sci. 13: 547-556.
Laursen, A.K. 1995. The Lability of Proteinaceous Seston in Three Maine Estuaries. M.S. Thesis, University of Maine. 52 pp .
Lee, W.Y. 1975. Succession and some aspects of population dynamics of copepods in the Damariscotta River estuary, Maine. Ph.D. Diss., University of Maine.
Loder, T.C. and P.M. Glibert. 1977. Blank and salinity corrections for automated nutrient analysis of estuarine and sea waters. In: Advances in automated analysis, Technicon INtemational Congress 1976, V. 2, p. 48-56.
Mayer, L.M., L.L. Schick, and F. Setchell. 1986. Measurement of protein in nearshore marine sediments. Mar. Ecol Prog. Ser. 30:159-165.
McAlice, B.1. 1977. A preliminary oceanographic survey of the Damariscotta River Estuary, Lincoln County, Maine. Maine Sea Grant Tech. Rep. No. 13.
McAlice, B J. 1979. Hydrographic and nutrient data, Damariscotta estuary, Lincoln County, Maine, 1967-1977. Maine Sea Grant Tech. Rep. No. 43.
McAlice, B.J., J. Cura and D. Carlson. 1978. Nutrient chemistry. pp. 7.1-7.36. In: Final Report; Environmental Surveillance and Studies at the maine Yankee Nuclear Generating Station, 1969-1977. Maine Yankee Atomic Power Company, Augusta, Maine.
Parsons, T.R., Y. Maita and C.M. Lalli. I984. A Manual of Chemical and Biological Methods of Seawater Analysis. Pergamon Press. 173 pp.
Sanders, R.W. 1987. Tintinnids and other microzooplankton --seasonal distributions and relationships to resources and hydrography in a Maine estuary. J. Plankton Res. 9: 65-77.
Schoudel, A.J. 1996. The seasonal variation of nutrients in the Kennebec, Sheepscot, and Damariscotta estuaries. M.S. Thesis, University of New Hampshire.
Sieracki, M. E., P. G. Verity and D. K. Stoecker. 1993. Plankton Community response to sequential silicate and nitrate depletion during the 1989 North Atlantic spring bloom. Deep-Sea Research I/ 40(1/2):213-225.
Stickney, A.P. 1959. Ecology of Sheepscot River Estuary. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. No. 309.21 pp .
Townsend, D.W. 1981. Comparative ecology and population dynamics of larval fishes and zooplankton in two hydrographically differeat areas on the Maine coast. Ph.D. Thesis,
University of Maine University of Maine.
Townsend, D.W., L.M. Mayer, Q. Dortch and R.W. Spinrad. 1992. Vertical Structure and Biological Activity in the Botton Nepeloid Layer of the Gulf of Maine. Cont. Shelf Res. 12: 367-387.
UNESCO. 1981. Background papers and supporting data on the practical salinity scale 1978. UNESCO Technical Papers in Marine Science, 37, 144 p .
Wong, M.W. 1996. Phytoplankton of the Kennebec Estuary, Maine. M.S. Thesis, University of Maine. 86 pp .
Wright, S., S. Jeffrey, R.F.C. Mantoura, C. Lleweilyn, T. Bjomland, D. Repeta, and N. Welschmeyer. 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser. 77:183-196.

Figure 1: Location of the three estuaries and features mentioned in the text.

Table A. 1 (D) September 24, 1993, Damariscotta Estuary
(S) September 25, 1993, Sheepscot Estuary
(K) September 26, 1993, Kennebec Estuary

Table A. 2 (D) February 8, 1994, Damariscotta Estuary
(S) February 8, 1994, Sheepscot Estuary
(K) February 9, 1994, Kennebec Estuary

Table A. 3 (D) May 3, 1994, Damariscotta Estuary
(S) May 4, 1994, Sheepscot Estuary
(K) May 5, 1994, Kennebec Estuary

Table A. 4 (D) June 7, 1994, Damariscotta Estuary
(S) June 8, 1994, Sheepscot Estuary
(K) June 9, 1994, Kennebec Estuary

Table A. 5 (D) July 7, 1994, Damariscotta Estuary
(S) July 6, 1994, Sheepscot Estuary
(K) July 5, 1994, Kennebec Estuary

Table A. 6 (D) August 30, 1994, Damariscotta Estuary
(S) August 31, 1994, Sheepscot Estuary
(K) September 1, 1994, Kennebec Estuary

Table A. 7 (K-A) September 16-17, 1995, Kennebec Estuary, high tide (K-B) September 16-17, 1995, Kennebec Estuary, ebbing (K-C) September 16-17, 1995, Kennebec Estuary, low tide (K-D) September 16-17, 1995, Kennebec Estuary, flooding

TABLEA LEGEND

SPM total suspended particulate matter
chl a chlorophyll a
pheo pheopigments (total)
POC particulate organic carbon
PON particulate organic nitrogen
PP particulate phosphate
EHAA enzymatically hydrolyzed amino acids (similar to protein)
NO 3 nitrate $\left(\mathrm{NO}_{3}\right)$
NO 2 nitrite $\left(\mathrm{NO}_{2}\right)$
$\mathrm{NH} 4 \quad$ ammonium $\left(\mathrm{NH}_{4}{ }_{3}{ }^{+}\right)$
SiO 2 silicate
OD opfical density
PAR photosyntheticaliy active radiation ($k=$ extinction coefficient)

Station locations are given by the distance from the mouth of estuary. With the exception of the September 1995 survey, sampling on each survey started from the mouth of the estuary at high tide. As sampling proceeded towards the head of the estuary with the water ebbing from the riverine end, a compressed picture of the estuary was measured.

Hydrographic data, for all surveys except June 1994 and the Kennebec September 1995 survey, were made by profiling ternperature and conductivity from the surface to within 3 m of the bottom using a Neil Brown CTD system. Salinity and density were computed based on the 1978 Practical Salinity Scale (UNESCO, 1981), using the software provided by General Oceanics/Neil Brown. The CTD data on the other two cruises were obtained with a Sea-Bird CTD, and salinity and density were calculated using Seasoft version 3.3 H software. A Sea Tech in situ fluorometer and $25-\mathrm{cm}$ path length transmissometer was also attached to the profiling package. The fluorometer used in September 1995 was a WetLabs instrument.

Water samples were collected with Niskin bottles at various depths at every station immediately following the CTD cast for the first six cruises; water was collected in September 1995 using a SeaBird carousel (rosette) with Niskin bottles. On all cruises, subsamples were taken from the Niskin bottles for various analyses following prescreening through $200 \mu \mathrm{~m}$ Nytex mesh.

In the September 1995 survey of the Kennebec, stations were sampled four times during a single tidal cycle: at high tide, ebbing tide, low tide and flooding tide. Transects were made from the station at Merrymeeting to Green Point (the upper estuary and freshwater zone) on the first day and from Fish Plant to Dix Island (the middle and lower estuary) on the second day. Temperature, salinity, and density for this survey were acquired using a SeaBird SBE 25-03 SeaLogger CTD and SeaSoft version 4.213 software. Niskin bottle water samples were taken from various depths in the center of the channel and from the top 1 m on each side of the channel as close to shore as the vessel could reach. Each transect was finished within 90 minutes.

Salinity samples were collected directity from Niskin bottles and analyzed using a Guitdline AutoSal 8400 calibrated with Sargasso Seawater (36.5 psu).

POC, PON, and SPM (Particulate organic carbon (POC), particulate organic nitrogen (PON), and suspended particulate matter (SPM)) were analyzed. POC and PON samples were collected by filtering 500 mls seawater from each sample depth onto a precombusted pre-ashed GF/F filter, the samples frozen and later analyzed with a Perkin Elmer 2400 Series II CHNO/S Elemental (Parsons et al., 1984). (Filters were not vapor-acidified to remove inorganic carbon. Thus the concentrations may not accurately represent POC, although contamination by inorganic carbon is expected to be small in the estuaries. C / N
ratios did not indicate significant quantities of CaCO_{3}.) Total suspended particulate material (SPM) measurements were made according to the methods in Strickland and Parsons (1972).

Chlorophyll a and phaeopigments were determined on all water samples by filtering 100 ml through a $25-\mathrm{mm}$ GF/F filter onboard and extracting the pigments for at least 24 hr . in 90% acetone in the dark at $-18^{\circ} \mathrm{C}$ (Parsons et al., 1984a). They were analyzed according to the standard fluorometric technique with acidification step of Parsons et al. (1984) on a Turner Designs fluorometer calibrated against pure chlorophyil a (Sigma Chemical Co.). Concentrations of selected samples were confirmed by HPLC following the procedure of Van Heukelem et al. (1992).

Fucoxanthin- Fucoxanthin (2L, 47mm GFC) was extracted in 100% acetone according to the procedure of Bidigare (1991) and separated using high performance liquid chromatography (HPLC) following the method of Van Heukelem et al. (1992). Fucoxanthin was identified and quantified based on comparisons with a standard.

EHAA- Enzymatically hydrolyzed amino acids (2L, 47mm GFC) were measured according to the procedure of Mayer et al. (in press) which involves a six hour long enzyme-mediated hydrolysis, a trichloroacetic acid precipitation step, and fluorometric detection of the orthophthaldialdehyde derivative.
$\mathrm{NO}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{NH}_{4}{ }^{+}, \mathrm{PO}_{4}{ }^{-3}, \mathrm{SiO}_{2}{ }^{-}$- All dissolved inorganic nutrients were prefiltered (30 ml through a $25 \mathrm{~mm} 0.45 \mu \mathrm{~m}$ Millipore filter) and analyzed using a Technicon AutoAnalyzer. Methods for using the AutoAnalyzer for seawater nutrient chemistry are described by Technicon and modified by Glibert and Loder (1977). Samples were measured against working standards which were prepared by diluting stock standards into low nutrient Sargasso Seawater (36.5 psu) adjusted to within 2 psu of the samples. Corrections were made for the refractive index according to Loder and Glibert (1977).

PP- Particulate phosphate ($1 \mathrm{~L}, 47 \mathrm{~mm}$ GFC) filters were treated following the procedure of Zimmerman (1993, pers. comm.) which involves muffing the filters at $520^{\circ} \mathrm{C}$, soaking in 1 N HCl , and a final soak and centrifugation in deionized water. The extract was analyzed following the method for ortho-phosphate measurment described by Glibert and Loder (1977).

OD-Optical density was measured by prefiltering the sample (50 ml through a $25 \mathrm{~mm} 0.45 \mu \mathrm{~m}$ Millipore filter) and scanning the absorbance in a $10 \mathrm{~cm}(25 \mathrm{ml})$ cell from 180-650nm on a Hewlett Packard 8452 Spectrophotometer (PDA). Peak absorbance, which occurred at 282-286 nm, is included in Table A. Additional wavelength absorbancies are also available. Optical density of filtered samples at 284 nm representing the peak of absorption were reported to indicate the relative amount of dissolved organic matter (DOM) in the water.

PAR- Vertical profiles of photosynthetically active radiation (PAR) in the water column were measured on all cruises using a 4π, spherical LiCor underwater quantum sensor (LI-193SA). Subsurface irradiance intensity was measured simultaneously against the incident solar radiation with a matched quantum sensor (LI-190SA) mounted on the deck of the ship, since the incident light intensity can vary greatly especially with clouds temporarily obscuring the sun. The PAR measured at various depths in the water column (usually at 1 m or 2 m intervals) were expressed in percentages of the total PAR measured on deck. The diffuse attenuation, or extinction coefficient (k) was calculated from,

$$
\begin{equation*}
I_{z}=I_{0} e^{-k z} \tag{1}
\end{equation*}
$$

where I_{Z} and I_{0} are percentages of light received at two consecutive depths and Z is the change in depth in meters. On the September 1995 Kennebec cruise, subsurface PAR was also measured by the LiCor underwater radiation sensor. However, simultaneous on-deck radiation data were not retrieved after the cruise and thus extinction coefficients were calculated by the difference of radiation between two depths measured without considering any changes of incident radiation (change of cloud cover) during the cast.

Diatoms, Dinoflagellates- Phytoplankton cell counts were made on Lugol's (acidified)-preserved (Parson et al., 1984) whole water samples as follows: Water samples were taken from the surface and subsurface water at each station. A $100-\mathrm{ml}$ subsample was allowed to settle in a graduated cylinder for 48 72 hr . It was then concentrated by drawing off from the top a volume of from 50 to 90 ml (this gave a concentration factor of 2 to 10 for the remaining sample). The settling process employed in the concentration method allowed only larger species of phytoplankton (microplankton, $20-200 \mu \mathrm{~m}$) to be retained for identification. A 1 ml subsample was then injected into a Sedgwick-Rafter counting cell and enumerated under 100-200X with a Nikon compound microscope. The entire counting cell was enumerated resulting in 500 to 3000 cells identified to species (when possible) for each sample. Confirmations of certain species were made by mounting samples on microscope slides and observing under 400 X or 1000 X with oil. For the purposes of this report, only major taxonomic catagories are given.

REFERENCES:

Parsons, T. R., Y. Maita and C. M. Lalli. 1984. A Manual of Chemical and Biological Methods of Seawater Analysis. Oxford, Pergamon Press. 173 p.

Bidigare, R. R. 199). Analysis of algal chlorophylls and carotenoids. Geophys. Monogr. 63: 119-123.

Van Heukelem, L., A. J. Lewitus and T. M. Kana. 1992. High-performance liquid chromatography of phytoplankton pigments using a polymeric reversed-phase C_{18} column. J. Phycol. 28: 867-872.

Glibert, P. M and T. C. Loder. 1977. Automated analysis of nutrients in seawater:A manual of techniques. WHOI Tech. Rep. 77: 47.

Loder, T. C. and P. M. Glibert. 1977. Blank and salinity corrections for automated nutrient analyses of estuarine and sea waters. Advances in Automated Analysis. Technicon International Congress 1976: 48-56.

Strickland, J. D. H. and T. R. Parsons. 1972. A Practical Handbook of Seawater Analysis. Bull. Fish. Res. Bd. Canada 167 (2nd ed.): 312.

Mayer, L. M., L. L. Schick, T. Sawyer, C. J. Plante, P. A. Jumars, R. L. Self. (in press). Bioavailable amino acids in sediments: A biomimetic, kinetics-based approach. Limnol. Oceanogr.
Damariscotto Dala Summery - 24 Sept ' 93

$\underbrace{}_{\text {atation-botile }}$	$\begin{array}{\|c\|} \hline \text { Longitude } \\ \text { deg-min } W \\ 69^{\prime} \cdot 34.20 \end{array}$	$\frac{\text { Lulitude }}{4 \operatorname{dog}^{2}-\min N}$	duept (M) (1) $\frac{25}{}$	$\begin{gathered} {\left[\begin{array}{l} \text { Salilnity } \\ \text { (PSU) } \end{array}\right]} \\ 31.89 \end{gathered}$	$\begin{gathered} \mathrm{SPM} \\ \left(\mathrm{mg} \mathrm{~L}^{-1}\right) \\ 3.4 \end{gathered}$	$\begin{gathered} c h 1 \\ \left(\mu, \mathrm{~L}^{-1},\right. \\ \hline 1.76 \end{gathered}$	$\begin{gathered} \text { pheo } \\ \left(\mu \mathrm{p} \mathrm{~L}^{\prime}\right) \end{gathered}$	fucegra itivirit ($\mu \mathrm{D}_{\mathrm{L}} \mathrm{L}^{-1}$)	$\begin{gathered} \text { POC } \\ \frac{\mathrm{mg} \mathrm{~L}^{-1}}{\mathrm{C} \mathrm{D}_{1}} \end{gathered}$		$\begin{aligned} & \hline P P \\ & (\mu M N) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { EHAA } \\ & \left(\mathrm{mg}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{NO3} \\ & \left(\frac{1}{2}\right) \end{aligned}$			$\left[\begin{array}{l} \mathrm{PO4} \\ (\mu \mathrm{M}) \end{array}\right.$	$\begin{aligned} & \mathrm{SFO} 2 \\ & (\mathrm{H} / \mathrm{M}) \end{aligned}$	$\begin{gathered} 00 \\ A \cup, ~ \\ \hline 284 \mathrm{~nm} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PAR } \\ k\left(m^{-1}\right) \end{array}$	$\begin{array}{\|c\|} \hline \text { dlatoms } \\ \text { (cells } \left.\mathrm{mL}^{+}\right) \end{array}$	dinoflag. (col/s mL- ${ }^{-1}$)
$1-1$ $1-2$			25 15	31.89 31.82	3.4 1.0	1.76 2.05			0.248 0.188	0.028		0.117		0.35		1.05	8.32	0.133			
1-3			10	31.78	1.4	2.78			0.188	0.025	0.28	0.180	2.35	0.25	1.43	0.91	8.28	0.112	0.28		
$1-4$			5	31.81	0.2	1.92		0.392	0.174	${ }_{0}^{0.018}$	0.20	0.123	2.97	0.26	1.64	1.21	6.88	0.100	0.51		
1.5			1	31.78	1.0	1.56			0.643	0.059	0.81	0.161	2.41	0.25	1.69	0.89	8.51	0.093	0.32	238.0	1.5
$2 \cdot 1$	34.94	52.53	12	31.77	1.6	1.61			$0.19{ }^{\text {a }}$	0.025	0.32	0.195	2.22	-0.23	1.50	0.80	8,43	0.124	0.12	259.0	2.8
$2 \cdot 2$			8	31.76	1.8	1.55			0.210	0.026		0.155	2.37	0.23	1.54	1.00	7.00	0.106			
$2 \cdot 3$			4	31.76	1.4	1.56		0.364	0.860	0.027	0.18	0.171	2.41	0.23	1.68	0.97	7.06	0.127	0.31		
$2-4$			1	31.76	1.0	1.39			0.242	0.030	0.28	0.155	2.27	0.24	1.58	0.99	10.44	0.078	0.13	214.2	1.0
$3-1$	34.65	54.07	20	31.71	1.4	1.40			0.285	0.034	0.09	0.161	2.43	0.28	2.11	1.02	8.61	0.121			
3-2			15	31.71	1.6	1.39			0.273	0.037	0.22	0.207	2.45	0.28	1.95	1.07	8.47	0.103			
33			10	31.71	1.4	1.18			0.174	0.023	0.40	0.173	2.37	0.28	1.77	1.08	8.20	0.105	0.32		
3.5			5	31.71	1.0	1.28		0.178	0.223	0.027	0.15	0.183	2.41	0.28	1.83	1.08	9.32	0.097	0.41	224.5	2.5
4.1	34.22	55.20	12	31.71	0.0	1.10		0.234	0.199	0.024	0.07	0.146	2.43	0.28	1.86	0.98	8.85	0.107	0.14	211.2	2.4
4.2			8	31.64	1.8	1.73			0.307	0.031	0.19	0.131	2.33	0.25	1.80	1.01	${ }^{10.69}$	0.110			
$4 \cdot 3$			4	31.63	1.8	1.77		0.304	0.141	0.020	0.18	0.149	2.18	0.25	1.71	1.05	8.67	0.118	0.41		
4.4			1	31,62	2.2	1.92			0.550	0.041	0.20	0.140	2.19	0.25	1.96	1.12	${ }_{9.68}$	0.122	0.30	350.2	4.0
5.1	35.02	56.21	12	31.57	1.2	2.28			0.285	0.035	0.23	0.140	2.15	0.28	1.98	0.89	17.69	0.131			
$5-2$ 5.3			8	31.56	2.4	2.49			0.260	0.035	0.22	0.121	2.17	0.24	2.03	1.11	12.44	0.154	0.47		
5-4			1	31.55	1.2	2.27		0.354	0.227	0.041	0.18	0.114	2.05	0.24	1.88	1.11	11.29	0.125	0.31	278.8	0.8
6 -1	34.41	57.63	12	31.51	5.6	2.87			0.254	0.035	0.17	-0.143	2.11	0.25	2.0	1.00	10.58	0.135	0.50	505.8	3.4
6-2			8	31.50	3.2	2.81			0.263	0.033	0.24	0.150	2.36	0.27	2.3		1.08	0.074			
0.3			4	31.50	2.2	2.72		0.460	0.224	0.030	0.23	0.190	1.88	0.23	1.83	1.2	10.65	0.058	0.60		
64			1	31.50	1.8	2.59			0.219	0.031	0.23	0.148	1.95	0.24	1.97	1.11	11.23	${ }_{0}^{0.072}$	0.61	270.2	0.8
7.1	33.05	59.35	12	31.38	6.0	5.86			0.393	0.060	0.40	0.219	1.41	0.22	1.10	1.03	10.09	0.066	0.24	44.6	1.8
$7-2$			${ }^{8}$	31.38	4.2	6.12			0.474	0.059	0.21	0.131	1.18	0.23	1.14	0.91	10.32	0.042			
7			4	31.38	4.4	5.83		1.155	0.370	0.058	0.39	0.250	0.72	0.25	0.87	0.55	12.85	0.088	0.57		
$8-1$	32.55	$44 \cdot 00.30$	1	-31,39	4.6	6.15			0.388	0.083		0.208	1.22	0.25	1,40	0.97	11.96	0.088	0.60	588.0	3.6
8.2			1	31.21	4.4	4.87			0.371	0.050	0.36	0.220	0.72	0.22	2.33	1.16	${ }_{1}^{12.62}$	0.091	0.86	115.5	0.5
0.1	32.60	01.13	1	31.22	3.6	1.62		0.179	0.229	0.031	0.23	0.118	1.18	0.26	3.02	0.99	15,69	0.125	0.01	138.0	0.0
10.1	32.16	01.90	1	30.79	2.0	1.19		0.102	0.110	0.014	0.18	0.098	1.14	0.22	2.31	1.81	8.88	0.007	138	\bigcirc	0.5
11.1		zodiac	0.5	30.72	0.0						0.13	0.112	0.97	0.13		1.04	8.61	0.249	1.38		

Daniarascolla Dada Sumprary - 8 Fob 94

Station-ballio	Longhided	$\begin{aligned} & \text { Lalifude" } \\ & \text { ideg min } \mathrm{N} \end{aligned}$	$\left[\begin{array}{c} D_{0 p t h} \\ (M) \end{array}\right.$	$\begin{aligned} & \text { salinity } \\ & \text { (PSUS } \end{aligned}$	$\begin{gathered} \text { SPM } \\ \left(\text { mot } t^{4}\right. \end{gathered}$	$\begin{gathered} \mathrm{cNI}^{\mathrm{a}} \\ \left(\mathrm{cog} \mathrm{~L}^{\prime}\right) \end{gathered}$	$\begin{gathered} \mathrm{ph}+0 \\ \mathrm{pog} \mathrm{~L}^{\prime} \mathrm{l} \end{gathered}$	$\begin{gathered} \text { Musortrin hin } \\ \text { (yop L' } \end{gathered}$	$\begin{gathered} 90 C \\ \operatorname{son} L^{-1} h \end{gathered}$	$\left[\begin{array}{c} 90{ }^{-1} \\ \left(\mathrm{mgt}^{-1}\right) \end{array}\right]$	$\left[\begin{array}{c} P P \\ (\mu M) \end{array}\right]$	$\begin{gathered} \text { EHAKA } \\ \left(\mathrm{mg} \mathrm{~L}^{\prime}\right) \end{gathered}$	$\begin{aligned} & \mathrm{NOO} \\ & (y \mathrm{Na}) \end{aligned}$	$\left.\begin{array}{l\|} \mathrm{NO} 2 \\ 1 \\ y+n \end{array} \right\rvert\,$	$\begin{aligned} & \mathrm{MHO} 4 \\ & \mathrm{~g} \mathrm{MNO}_{3} \end{aligned}$	$\left[\begin{array}{cc} \mathrm{PO} \\ 1 \end{array}\right.$	$\begin{aligned} & \operatorname{sio} \overline{2} \\ & (y)+1) \end{aligned}$		$\begin{aligned} & \text { PRR } \\ & \left.\min ^{-1}\right) \end{aligned}$	$\begin{gathered} \text { dhatom } \\ \text { (cens mit } \mathrm{m}^{-1} \text {) } \end{gathered}$	$\begin{aligned} & \text { dinefitog: } \\ & \text { (colle mL }{ }^{-1} \text {) } \end{aligned}$
1.1	69.3337	$43^{\prime} 5873$	8	2953	14	1.86	051		0342	0033	0.20	018	679	014	051	074	1404	023	024		
+2			45	2938	14	2 as	037		0413	0.043	0.21	0.25	832	014	060	079	14.16	017	038	1045	0.0
2.			1	2927	16	1 \%6	051		0467	0.046	0.23	0.17	826	0.14	051	0.74	14.40	021	0.38	4046	0.1
2-2	3497	56.12	13	3129	12	186	055		0234	0.025	0.15	0.13	1034	0.15	0.30	091	1306	0.14	0.30		
$2-2$ 2.3 2			7	3091	10	2.26	035		0285	0.027	0.15	014	9.93	0.15	042	Ot2	13.27	012	022	02.8	DO
$\frac{2.3}{3.1}$			1	30.51	10	2.26	046		0537	0.044	0.19	0.18	9.45	016	054	085	1347	012	0.78	87.6	0.0
3.2	3454	5429	25	3168	0	1.42	0.33		0218	0.020	0.14	012	1103	017	0.74	097	12.77	012			
3.2 3.3			15	3171	14	0.64	013		0.175	0.017	0.12	0.13	1906	$\square 16$	053	092	1259	012	027	633	0.1
3.3			1	34.76	08	1.4	024	0074	0.274	0.017	0.13	0.14	1704	016	054	0.82	12 s 4	015	0.33	428	00
4.7	3429	5009	28	3254	10	0.64	013	0.000	0.178	0.015	006	013	12.96	0.15	037	098	1200	011			
4.2 4.3			13	3235	12	095	$0 \% 3$		0220	0016	009	011	1242	018	048	103	12.12	0 \% 3	c 13	37.1	09
4.3			1	32.26	08	1.02	010	0093	0216	0019	011	0.31	1207	015	037	098	1224	012	022	328	00

Damarisentta Data Summary 7 Juna '94

Damariseplto Data Summary -3 May '84

stallon-bolthe	Longiludy	$\frac{\text { Lalitudo }}{\operatorname{ldeg}-m \ln N}$	$\begin{gathered} \text { dopth } \\ (M) \end{gathered}$	$\begin{gathered} \text { Salinity } \\ (\mathrm{PSU}) \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SPM } \\ \left(\text { (mq } L^{-1}\right) \end{gathered}\right.$	$\begin{gathered} \text { chit } \\ \left(\mu, L^{-5}\right) \end{gathered}$	$\left.\begin{array}{c} \text { pheo } \\ \left(\mu \mathrm{L} \mathrm{~L}^{-1}\right. \end{array}\right)$	$\begin{gathered} \text { fuconenthin } \\ \left(\mu, L^{-1}\right) \end{gathered}$	$\begin{gathered} P O C \\ \left(m q L^{-1}\right) \end{gathered}$	$\left[\left.\begin{array}{c} \mathrm{PON} \\ \left(\mathrm{mgL} \mathrm{~L}^{-1}\right. \end{array} \right\rvert\,\right.$	$\begin{gathered} P P \\ (\mu M) \end{gathered}$	$\begin{gathered} \text { EHAA } \\ \left(m, L^{-1}\right) \end{gathered}$	$\begin{aligned} & \mathrm{NO} 3 \\ & (\mathrm{yM}) \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{NH} 4 \\ & \left(\mathrm{\mu N} \mathrm{~N}_{4}\right. \end{aligned}$	$\begin{aligned} & \mathrm{PO} 4 \\ & (\mathrm{y} \\| \mathrm{N}) \end{aligned}$	$\left.\begin{array}{l} \mathrm{SKO} \\ (\mu \mathrm{M}) \end{array}\right]$	$\begin{array}{c\|} \hline 00 \\ \mathrm{Au} \cdot \mathrm{tan} \\ \hline \end{array}$	$\begin{aligned} & \text { PAR } \\ & \mathrm{m}_{\mathrm{c}}\left(\mathrm{~m}^{\prime 1}\right) \end{aligned}$	$\begin{gathered} \text { diatoms } \\ \text { (ceite } \mathrm{mL}^{-1} \text {) } \end{gathered}$	$\begin{gathered} \text { dinonag. } \\ \text { (cellis mil- } \end{gathered}$
$1-1$	69*3. 22	43*51,06	18	30.59	02	0.82	0.37		0.229	0.033	0.15	0.11	0.79	0.07	1.18	0.33	4.16	0.140	0.11		
1.2			8	30.44	1.0	1.21	0.40		0.205	0.033	0.16	0.10	0.04	0.00	1.18	0.33	4.41	0.131	0.00		
1.3			4	30.38	1.2	1.78	0.46	0.195	0.257	0.042	0.18	0.11	1.08	0.08	1.36	0.32	4.63	0.115	0.27	45.4	1.6
1-4			1	30.32	1.0	2.04	0.33		0.288	0.040	0.17	0.20	0.81	0.09	1.17	0.32	4.74	0.145	0.19	28.2	3.1
$2-1$	34.86	52.48	20	30.33	1.2	127	0.41		0.229	0.033		0.10	0.87	0.07	1.29	0.32	4.30	0.135	0.18		
$2 \cdot 2$			15	30.26	2.0	1.54	0.39		0.189	0.030	0.17	0.08	0.94	0.08	1.45	0.34	4.45	0.135			
$2 \cdot 3$			10	30.23	2.0	1.26	0.35		0.246	0.029	0.17	0.09	1.17	0.06	1.90	0.34	4.53	0.200	0.31		
$2 \cdot 4$			5	30.21	2.2	4.27	0.48	0.145	0.285	0.034	0.23	0.09	1.25	0.08	1.89	0.33	4.81	0.135	0.37	39.7	1.6
$2 \cdot 5$			1	30.23	1.6	1.15	0.38		0.207	0.025	0.15	0.14	0.98	0.10	1.76	0.32	4.69	0.168	0.34	41.3	1.5
311	34.55	54.17	25	30.06	2.0	1.49	0.40		0.215	0.035	0.18	0.13	0.92	0.10	1.31	0.32	4.52	0.172			
$3-2$			15	30.04	1.4	2.18	0.54		0.228	0.033	0.16	0.09	0.92	0.08	1.29	0.30	4.62	0.180			
3-3			10	29.98	1.0	1.73	0.56		0.242	0.035	0.19	0.10	0.84	0.00	1.18	0.32	4.57	0.193	0.34		
3.4			5	29.08	1.8	2.18	0.54	$0.29 \dagger$	0.284	0.037	0.20	0.11	0.71	0.09	1.07	0.28	4.94	0.261	0.41	54.5	0.8
3-5			1	29.80	1.8	1.68	0.55		0.230	0.033	0.17	0.15	1.06	0.07	1.60	0.28	4.82	0.151	0.37	60.7	1.0
4.1	34.17	55.18	13	29.79	2.6	2.00	0.51		0.231	0.037	0.22	0.16	0.69	0.09	1.04	0.28	4.68	0.985			
4-2			8	29.68	4.2	2.08	0.52		0.224	0.039	0.19	0.11	0.68	0.06	1.01	0.28	4.85	0.162	0.35		
4.3			4	29.36	3.1	2.82	0.53	0.376	0.271	0.041	0.23	0.13	0.56	0.08	0.81	0.28	4.78	0.105	0.39	77.1	1.7
4-4			1	29.25	3.2	2.10	0.42		0.292	0.041	0.21	0.18	0.50	0.07	0.69	0.24	4.88	0.363	0.33	78.5	0.8
$5-1$	35.07	56.23	13	29.09	2.2	2.94	0.38		0.268	0.045	0.25	0.17	0.51	0.08	0.75	0.27	4.76	0.164			
5-2			7	28.73	1.8	3.39	0.48	0.657	0.305	0.054	0.28	0.16	0.41	0.08	0.59	0.25	4.76	0.200	0.44	98.8	1.7
5.3			1	28.54	2.6	3.02	0.19		0.288	0.047	0.27	0.20	0.38	0.06	0.51	0.23	4.82	0.183	0.37	122.0	1.7
8.1 8-2	34.41	57.76	11	28.11	1.6	3.36	0.37		0.284	0.045	0.27	0.20	0.22	0.04	0.35	0.22	4.94	0.255			
6-2			1	27.90 27.65	1.8	3.72	0.44 0.35	0.506	0.334	0.054	0.28	0.16	0.21	0.03	0.53	0.23	5.14	0.158	0.44	150.3	0.7
7-1	33.15		1	27,65	1.4	3.27	0.35		0.308	0.049	0.27	0.23	0.13	0.05	0.23	0.20	5.23	0.201	0.41	128.6	1.8
7.2	3.15	58.28	4	27.06 27.40	3.2	5.27	0.34	0.574	0.371	0.061	0.37 0.87	0.32	0.35	0.05	0.48	0.20	${ }^{4.78}$	0.207			
7-3			1	28.19	2.4	3.61	0.42	0.574	0.577	0.091	0.35	0.510	0.15 0.00	0.01	0.56	0.16 0.16	5.33 8.39	0.182 0.211	0.51 0.39	147.7	2.6
6-1	32.48	$44^{\circ} 00.08$	3.5	28.75	3.7	5.85	0.63		0.731	0.112	0.72	0.60	0.36	0.01	0.33	0.15	6.35	0.238	0.63	107.9	8.3
8.2			1	26.07	3.3	5.68	0.57		0.825	0.132	0.71	0.58	0.06	0.03	0.19	0.15	8.49	0.228	0.52	120.6	8.7
9.1	32.70	01.08	4	25.53	3.6	4.74	0.55		0.574	0.083	0.55	0.31	0.34	0.02	0.37	0.14	7.21	0.275	0.59	121.9	8.4
9.2			1	23.89	4.0	8.82	1,09		0.818	0.119	0.45	0.42	0.41	0.02	0.45	0.12	8.81	0.300	0.62	80.8	12.3
$10 \cdot 1$	32.22	01.88	3	23.80	2.0	2.74	8.40		0.472	0.062	0.48	0.19	0.20	0.07	0.47	0.95	8.68	0.204	0.59	92.3	1.4
10-2			1	21.07	2.4	2.77	0.77		0.388	0.058	0.35	0.23	0.12	0.05	0.54	0.16	10.99	0.356	0.62	61.7	5.7

Tablo $A, E(D)$
Dumariscotta Data Summary - 7 July ' 84

Tration-boltio	Lonpitude den-min W	Latilude (dea-min N	dapth (M)	$\begin{aligned} & \text { Salinity } \\ & \text { (PSU) } \end{aligned}$	$\begin{gathered} \text { SPM } \\ \left(m \cap L^{-1}\right) \end{gathered}$	$\left[\begin{array}{c} \text { chl } \\ \left(\mu \cap L^{-1}\right) \end{array}\right]$	$\begin{gathered} \text { pheo } \\ \text { (} \left.\mu \mathrm{Q} \mathrm{~L}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { Fucokanthlit } \\ \left(\mu g L^{-1}\right) \end{gathered}$	$\begin{gathered} \text { POC } \\ \left(m, L^{-1}\right) \end{gathered}$	$\begin{gathered} P O N \\ \left(m, L^{-4}\right) \end{gathered}$	$\begin{gathered} \mathbf{P P} \\ (\mu M) \end{gathered}$	$\left[\begin{array}{c} \text { EHAA } \\ \left(m \mathrm{~m}^{-1}\right) \end{array}\right.$	$\left[\begin{array}{l} \mathrm{NO} \\ (\mu \mathrm{M}) \end{array}\right]$	$\left[\begin{array}{l} \mathrm{NO} 2 \\ (\mu \mathrm{M}) \end{array}\right]$	$\begin{aligned} & \mathrm{NH} / \mathrm{H} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{PO} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathbf{\$ 1 0 2} \\ & (\mu \mathrm{M}) \end{aligned}$	$\left\lvert\, \begin{array}{c\|} \bar{O} \bar{D} \\ \hline 2 B 4 \end{array}\right.$	$\begin{aligned} & \text { PAR } \\ & k\left(\mathrm{~m}^{-1}\right) \end{aligned}$	$\begin{gathered} \text { diatoms } \\ \text { (calls } \mathrm{mL}^{-1} \end{gathered}$	$\begin{gathered} \text { dinoflag. } \\ \text { (colis mL }{ }^{-1} \text {) } \end{gathered}$
0-1	69 ${ }^{+34.36}$	$43 \cdot 49.28$	20	31.76	0.4	4.28	0.68		0.587	0.079	0.38	0.26	1.16	0.09	0.25	0.39	0.91	0.107			
0-2			15	31,68	0.4	4.28	0.68		0.747	0.084	0.47	0.35	0.11	0.03	0.05	0.23	0.21	0.127			
0.3			10	31.62	0.2	3.11	0.92		0.750	0.076	0.47	0.29	0.22	0.07	0.25	0.23	0.75	0.118	0.26		
O-4			5	31,39	0.2	2.17	0.59	0.495	0.545	0.059	0.31	0.21	0.22	0.05	0.12	0.20	0.75	0.110	0.38	2,003.0	17.0
0.5			1.	31.32	0.4	1.31	0.47		0.510	0.045	0.26	0.19	0.14	0.05	0.30	0.16	0.18	0.139	0.37	$1,254.4$	13.2
1.1	34.20	5.16	20	\$1,02	0.2	1.62	0.95	0.797	0.315	0.030	0.21	0.15	3.31	0.15	1.49	0.69	4.90	0.104			
1-2			12	31.64	2.4	2.44	0.88		0.574	0.070	0.31	0.21	1.30	0.12	0.73	0.47	2.33	0.137	0.29		
1-3			7	31.51	0.6	2.21	0.83	0.934	0.501	0.058	0.30	0.25	0.85	0.08	0.24	0.38	1.82	0.129	0.33	1,210.0	13.0
1-4			1	31.35	1.2	1.43	0.54		0.584	0.053	0.37	0.21	0.04	0.03	0.17	0.12	0.17	0.135	0.22	1,662.0	11.0
2.1	34.81	52.47	20	31.64	1.0	1.94	0.87		0.497	0.050	0.25	0.19	1.85	0.11	0.77	0.53	3.05	0.104			
$2-2$			10	31.48	1.4	2.09	0,88		0.500	0.059	0.34	0.20	1.04	0.09	0.39	0.43	2.26	0.143	0.33		
2.3			θ	31,30	1.0	2.09	0.76	0.550	0.675	0.060	0.40	0.22	0.52	0.07	0.20	0.38	1.59	0.152	0.36	1,065.0	6.5
$2-4$			1	31.20	3.8	1.94	0.59		0.495	0.056	0.23	0.17	0.36	0.08	0.31	0.40	1.51	0.149	0.28	947.0	2.0
3-1	34.56	54.15	30	31.31	4.0	1.70	0.76		0.328	0.044	0.28	0.15	0.44	0.09	0.52	0.44	2.04	0.117			
3.2			15	31.21	4.2	2.05	0.90		0.518	0.093	0.38	0.18	0.45	0.15	0.55	0.45	1.71	0.163			
3.3			6	31.17	4.6	2.05	0.80	0.920	0.651	0.065	0.31	0.20	0.43	0.07	0.41	0.43	4.16	0.142	0.41	833.0	6.5
3.4			1	31.12	4.8	1.84	0.68		0.491	0.056	0.27	0.20	0.39	0.07	0.31	0.39	1.47	0.124	0.34	834.5	0.5
4-1	34.19	55.13	14	31.21	4.0	1.74	0.83		0.484	0.054	0.38	0.13	0.75	0.12	0.72	0.46	1.97	0.166			
4-2			8	31.12	4.6	2.21	0.93	0.680	0.658	0.071	0.39	0.20	0.34	0.08	0.22	0.41	1.50	0.117	0.46	1,083.5	6.0
4.2			1	30.91	5.2	2.25	0.78		0.678	0.079	0,40	0.24	0.06	0.08	0.13	0.35	8.34	0.170	0.22	78.5	4.0
X1.1	35.60	55.14	1	30.71	5.0	2.05	0.85		0.876	0.097	0,49	0.30	0.07	0.02	0.33	0.37	1.46	0.183			
$\times 2.1$	35.37	55.32	1	30.69	4.8	1.74	0.69		0.668	0.070	0.37	0.20	0.11	0.05	0.58	0.38	1.32	0.167			
$\times 3.1$	35.16	55.48	1	30.66	3.8	1.90	0.68		0.645	0.070	0.41	0.21	0.04	0.05	1.06	0.41	1.33	0.197			
$\times 4-1$	34.90	55.66	1	30.65	3.8	1.70	0.68		0.576	0.089	0.40	0.23	0.08	0.03	0.11	0.30	1.13	0.145			
$\times 5$	34,80	55.78	1	30.75	3.4	2.29	0.85		0.544	0.070	0.39	0.23	0.70	0.05	0.57	0.40	1.20	0.150			
$5-1$	34.94	56.19	12	31.07	2.3	1.80	0.91	0.940	0.517	0.058	0.38	0.24	0.45	0.07	0.79	0.45	1.68	0.158			
5-2			8	30.98	2.9	2.05	0.89		0.688	0.073	0.37	0.18	0.23	0.15	0.64	0.A ${ }^{\text {de }}$	1.71	0.148	0.45		
$5-3$			4	30.85	0.3	2.09	0.85	0.785	0.508	0.070	0.37	0.26	0.18	0.13	0.23	0.42	1.40	0.156	0.47	575.0	3.0
$3-4$			1	30.80	1.1	2.01	0.84		0.493	0.085	0.36	0.18	0.33	0.13	0.31	0.41	1.49	0.158	0.40	588.5	1.5
81	34.38	57.84	10	30.50	2.3	7,86	1.01		0.539	0.062	0.38	0.14	0.33	0.07	0.81	0.50	1.71	0.174			
-2			5	30.45	1.1	1.70	0.92	0,767	0.650	0.059	0.41	0.17	0.33	0.07	0.63	0.51	1.71	0.470	0.53	307.2	6.0
8.3			1	30.42	0.3	1.68	0.98		0.518	0.065	0.38	0.15	0.33	0.10	0.72	0.51	1.74	0.181	0.52	315.2	0.8
7-1	33.20	59.27	9	30.40	28.8	2.58	3.91	1.522	3.226	0.398	0.50	0.32	0.13	0.10	0.96	0.57	1.80	0.173			
7.2			5	30.32	0.6	1.97	1.07	0.700	0.616	0.080	0.37	0.32	0.02	0.05	0.26	0.49	1.77	0.158	0.72	556.8	2.0
$7-3$			1	29.87	1.1	1.80	0.72		0.799	0.085	0.46	0.22	0.14	0.03	0.08	0.48	2.37	0.195	0.58	367.4	1.4
$x-1$	32.70	$44^{\circ} 00.09$	1	29.91	2.8	1.90	0.82		0.434	0.048	1.64	0.24	0.07	0.07	0.12	0.50	2.56	0.180			
xa-2	32.66	00.07	1	29.87	2.6	1.97	0.83		0.951	0.106	1.28	0.31	0.04	0.05	0.17	0.49	2.37	0.181			
x-3 3	32.41	00.08	1	29.93	2.0	1.02	0.78		0.698	0.099	1.00	0.25	0.17	0.03	0.04	0.48	2.50	0.238			
$\mathrm{M} / 4$	32.25	00.09	1		3.0	1.74	0.74		0.839	0.095	1.16	0.25	0.08	0.05	0.13	0.50	2.62	0.203			
6.4	32.39	00.08	4	30.09	1.2	2.25	1.22		0.910	0.092	1.64	0.25	0.02	0.03	0.13	0.49	2.27	0.262	0.83	659.2	0.4
日-2			1	29.67	2.8	1.70	0.73	0.421	0.653	0.088	1.16	0.28	0.09	0.05	0.10	0,49	2.81	0.264	0.57	472.4	1.6
6-1	32.88	01,13	3	28.57		2.13	0.96		0.783	0.102	1.58	0.30	0.14	0.05	0.25	0.77	7.03	0.320	0.78	151.8	1.8
9-2			1	28.25		2.21	0.63	0.742	0.807	0.116	1.08	0.31	0.49	0.00	0.85	0.85	7.81	0.357	0.85	75.4	2.4
10-1	32.10	01.84	1	28.55	0.4	1.58	1.18	0.662	0.762	0.075	0.82	0.17	0.00	0.10	1.02	0.98	7.85	0.272	0.32		

${ }^{\text {stalion-bekle }}$	$\begin{array}{\|c\|} \hline \text { Longhtude } \\ \text { dagn-min } w \\ \hline \text { Enond } \end{array}$	$\begin{array}{\|c\|} \hline \text { Latinuche } \\ \text { depanton } \mathrm{N} \end{array}$	depth and	[PSUS]	$\begin{gathered} \mathrm{SPM}^{\mathrm{sin}} \\ \left(\mathrm{mog}^{-5}\right) \end{gathered}$	$\begin{gathered} C \mathrm{CH}^{-1} \\ \operatorname{ton} \mathrm{~L}^{-h} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { pheo } \\ \text { ong } \mathbf{L}^{-9} \end{array}$		$\int_{\operatorname{Bog} \mathrm{L}^{2}}$	$\left[\begin{array}{c} \mathrm{PON}^{\prime} \\ \left(\mathrm{m}^{\prime} \mathrm{L}^{\prime}\right. \end{array}\right]$		$\begin{gathered} \text { EMiA } \\ 15 m \mathrm{~L}, \\ \hline \end{gathered}$	$\begin{gathered} 103 \\ (1002 \end{gathered}$	$\begin{aligned} & \mathrm{MOS} \\ & 1 \mathrm{non} \end{aligned}$	$\left[\begin{array}{c} \mathrm{N}+\mathrm{C} \\ (1+0 \end{array}\right]$	$\begin{aligned} & \text { Por } \\ & \text { (unimp } \end{aligned}$	$\begin{array}{\|l} \hline 102 \\ 9010 \end{array}$	$\begin{array}{\|c\|} \hline 6 \\ \text { Au } 284 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { PAR } \\ \log \left(m^{-1}\right) \end{array}$		
0.1	$69 \cdot 34.37$	43.49 .23	22	32.24	0.4	0.53	0.68		0.161	0.019	0.08	0.05	7.80	0.71	1.22	1.06	1537	0.140			
0.2			15	32.20	2.0	-. 7	0.00		0.180	0.025	0.10	0.08	0.28	0.64	1.63	1.04	13.50	0.150			
			10	32.03	1.6	1.00	0.86		0.300	0.048	0.22	0.16	2.80	0.45	1.19	0.79	8.03	0.208			
			5	32.00	2.0	2.17	0.92	1.147	0.295	0.053	0.28	0.15	2.35	0.34	1.21	0.6s	6.37	0.105	0.41	2080.0	1.0
			1	31.95	2.0	2.29	1.08		0.431	0.071	0.24	0.29	0.39	0.14	1.21	0.74	3.55	0.305	0.23	3130.0	2.0
-1	34.24	50.8	15	32.12	1.8	1.02	6.3	0.373	0.745	0.030	0.14	0.12	5.27	0.56	1.00	1.00	13.51	0.176			
1.2			10	32.01	1.6	1.90	ont		0.760	0.058	0.25	0.17	2.85	0.30	1.00	0.00	7.88	0.210			
1.3			5	31.86	20	2.25	1.03	0.609	0.420	0.050	0.30	0.31	1.38	0.27	0.87	0.75	5.05	0.220	0.42	2174.0	3.0
1.4			1	31.05	2.0	2.25	1.03		0.962	0.080	0.31	0.27	1.45	0.25	0.04	0.69	4.30	0.279	0.50	2340.0	2.0
$2 \cdot 2$	34.83	52.39	15	32.08	1.2	1.36	0.72		0.430	0.04	0.19	0.11	4.52	0.49	1.49	0.94	10.48	0.125			
$2 \cdot 2$			-	31.65	2.0	2.29	004		0.329	0.059	0.31	0.22	1.04	0.27	0.78	0.73	\$.04	0.187	0.30		
2.3			4	31.92	2.4	2.33	1.00	0.657	0.476	0.005	0.32	0.26	1.13	0.24	0.73	071	4.14	0.177	0.40	2357.0	6.0
2-4			1	31.01	2.0	2.29	0.93		0.425	0.057	0.31	0.21	1.45	0.26	1.43	0.84	4.11	0.204	0.30	1710.0	4.5
31	34.82	53.67	20	31.00	2.4	1.00	0.91		0.328	0.04	0.23	0.16	1.83	0.25	1.41	0.04	4.27	0.151			
32			15	31.87	3.6	2.23	1.47		0.451	0.060	0.31	0.20	1.22	0.20	1.13	0.76	3.42	0.168			
3-3			10	31.86	2.0	2.40	1.06		0.459	0.000	0.29	0.25	0.97	0.18	0.96	0.79	2.99	0.147	0.28		
3.4			5	31.85	1.6	2.72	1.31	0.523	0.457	0.073	0.31	0.32	0.20	0.10	0.45	0.72	2.24	0.171	0.46	2872.0	3.0
$3-5$			1	31.62	2.0	2.17	1.53		0.627	0.074	0.28	0.30	0.22	0.13	0.09	0.73	2.18	0.172	0.42	2765.0	2.0
4.1	34.31	55.31	11	31.79	1.2	3.15	1.21		0.523	0.074	0.32	0.79	0.50	0.11	0.74	0.77	2.29	0.198			
4.2			T	31.77	2.0	2.72	1.22		0.450	0.070	0.31	0.25	0.33	0.10	$0.8{ }^{\text {a }}$	0.71	2.20	$0.10{ }^{\text {a }}$	0.65		
$4 \cdot 3$			4	31.77	1.2	2.72	1.72	0.520	0.494	0.074	0.34	0.20	0.31	0.12	0.80	0.79	2.24	0.170	0.46	2128.0	5.0
4-4			1	31,75	1.2	2.37	1.10		0.511	0.004	0.31	0.23	0.28	0.11	0.85	0.00	2.25	0.176	0.50	2078.0	2.0
$5-1$	35.02	56.34	12	31.76	20	2.40	1.11	0.863	0.170	0.050	0.33	0.28	0.80	0.13	1.75	0.86	2.43	0.202			
5-2			a	34.60	3.8	2.05	1.10		0.378	0.057	0.20	0.21	0.35	0.10	1.11	0.te	2.30	0.245	0.39		
5-3			4	31.67	3.4	1.52	0.80	0.309	0.303	0.04	0.28	0.28	0.54	0.09	1.32	0.8\%	2.33	0.184	0.55	1259.0	0.0
5-4			1	31.60	2.8	2.01	0.93		0.352	0.051	0.27	0.20	0.28	0.10	0.85	0.84	2.34	0.204	0.52	1280.0	1.0
6 -1	34.47	57.07	11	31.56	2.4	1.88	0.78		0.370	0.041	0.26	0.18	0.16	0.07	0.74	0.69	2.14	0.201			
Q-2			8	31.50	2.4	1.74	0.63		0.354	0.043	0.26	0.18	0.47	0.09	1.12	0.80	2.28	0.184	0.43		
6-3			4	31.50	2.4	1.89	0.76	0.521	0.447	0.047	0.29	0.18	0.75	0.08	1.17	0.88	2.18	0.584	0.46	1290.5	1.0
6-4			1	31,50	3.6	1.70	0.63		0.403	0.047	0.28	0.17	0.55	0.08	O.80	0.es	2.20	0.249	0.4	1119.0	1.0
7.1	33.09	59.29	11	31.49	4.0	2.01	0.68	0.475	0.515	0.081	0.38	0.26	0.12	0.05	0.68	0.07	2.10	0258			
7.2			*	34.49	40	1.90	0.85		0.450	0.083	0.39	0.23	0.00	0.05	0.53	0.60	2.03	0.245	0.61		
7.3			4	31.43	4.8	1.70	0.73	0.357	0.254	0.034	0.40	0.25	0.07	0.08	0.50	0.09	2.40	0.24	0.38	1818.0	1.0
7.4				31.42	5.0	1.74	0.89		0.543	0.050	0.39	0.20	0.12	0.05	0.54	0.91	2.50	0.240	0.00	1504.0	2.0
8.1	32.53	44*00.12	4	31.33	5.8	2.05	0.80		0.530	0.076	0.52	0.27	0.05	0.13	1.03	0.93	2.90	0.220	0.65	1721.0	4.0
8.2			1	31.28	6.3	2.05	0.68	0.400	0.502	0.085	0.45	0.25	0.10	0.11	0.84	0.96	3.10	0.291	0.65	1660.0	1.0
8.1	32.54	07.14	4	30.87	7.5	1.39	0.72		0.394	0.057	0.38	0.15	0.58	0.25	2.66	1.41	B.46	0322	0.77	625.5	00
$8 \cdot 2$			1	30.87	5.7	1,39	0.72	0.193	0.385	0.055	0.33	0.10	0.65	0.27	300	1.42	6.50	0.292	0.74	573.0	1.0
10.1	32.15	01.88	4	30.50	6.0	0.74	0.82		0.310	0.037	0.25	0.09	0.81	0.31	3.95	1.58	6.39	0382	0.60	349.0	1.0
10.2			1	30.51	7.2	0.94	0.81	0.152	0.333	0.044	0.30	0.14	0.44	0.31	3.91	1.57	6.39	0315	060	222.0	0.0

Table A.2(\$)
Sheppscot Dala Summary - 8 Feb 'ga

slation-botte	$\begin{gathered} \text { Longitude } \\ \text { idog-min } w \end{gathered}$	$\int \text { Latilude }$	$\left[\begin{array}{c} \text { depim } \\ (M) \end{array}\right]$	$\begin{aligned} & \text { Syilinity } \\ & \text { PSUS } \end{aligned}$	$\begin{gathered} \text { SPWM } \\ \left(\mathrm{mg}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { cod }: ~ \\ \cos \cdot \mathrm{~L}^{\cdot} \cdot \mathrm{t} \\ \hline \end{gathered}$	$\begin{gathered} \text { Phoo } \\ \left(\mathrm{L}, \mathrm{~L}^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Mucomenthing } \\ \left(\operatorname{pg} \mathrm{L}^{-1}\right) \end{gathered}$	$\left.\begin{gathered} \mathrm{POC} \\ \left(\mathrm{mg} \mathrm{~L}^{+}\right) \end{gathered} \right\rvert\,$	$\left.\begin{array}{\|c\|c\|} \hline \text { PON } \\ \left(m p k^{-1}\right. \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline \text { PP } \\ (140 \end{array}$	$\begin{gathered} \text { EHKA } \\ \left(\mathrm{mak}^{-1}\right) \end{gathered}$	$\begin{aligned} & \hline \mathrm{NOO} \\ & (\mathrm{yO}) \end{aligned}$	$\left[\begin{array}{l} \mathrm{NOD} \\ 104 \end{array}\right.$	$\begin{aligned} & \mathrm{NH} 4 \\ & (\mathrm{HNO} \end{aligned}$	$\begin{aligned} & \text { POA } \\ & \text { (1 } \mathrm{H}) \end{aligned}$	$\begin{aligned} & \mathbf{5 1 0 2} \\ & (0) \end{aligned}$				$\begin{gathered} \text { dinofieg- } \\ \text { (conlemu-1) } \end{gathered}$
1.1 1.2	69.41,62	$43^{-51.97}$	40	32.75	18	0.58	034		0.210	0.020	0.19	0.07	13.33	0.18	0.28	101	11.91	0.176			
1.2 1.3			25	32.67	2.0	0.56	0.33		0.212	0.019	0.14	0.10	13.16	0.75	0.29	0.9*	12.58	0.159			
1.4			12	32.24	0.5	0.51	0.26		0.235	0.028	0.13	0.08	43.15	0.78	0.35	0.97	13.25	0.156	0.36	16.8	0.1
2-1			1	30.72	4.1	0.42	0.24	0.020	0,475	0.020	0.17	0.06	13.49	0.15	0.49	1.00	17,47	0.223	0.33	14.0	0.2
2-2	41.37	53.77	19	32.45	2.4	0.64	0.33		0.249	0.019	0.17	0.00	13.18	0.18	0.54	0.85	12.81	0.223			
$2 \cdot 3$			\square	31.04	2.6	0.04	0.20		0.247	0.023	0.16	0.11	12.89	0.66	0.90	1.04	t6.50	0.175	0.41	14.9	0.0
3-1	40.73	55.21	21	30.87	2.8	0.57	0.21	0.026	0.188	0.019	0.17	0.13	13.21	0.16	0.81	1.01	17.34	0.301	0.36	18.2	0.4
3-2			21	31.39	4.2	0.78	0.52		0.308	0.031	0.25	0.00	12.88	0.18	0.58	1.01	15.80	0.208			
3-3			12	30.81 30.81	6.4	0.73 0.75	0.49 0.45	0.046	0.415 0.349	0.036 0.038	0.28	0.09 0.07	12.42 12.43	0.18 0.15	1.11 0.41	0.00 1.00	17.18 17.50	0.177 0.194	0.26 0.2103 m	4.8	0.0 0.0
$4 \cdot 1$	40.38	58.71	18	29.55	5.6	0.59	0.45		0.200	0.023	0.26	0.06	12.32	0.13	0.00	0.04	20.53	0.262	0.19		
4-2			-	29.24	4.2	0.60	0.43		0.360	0.028	0.26	0.09	12.19	0.15	0.65	0.03	21.40	0.254	0.21 ¢m	4.3	0.1
4-3			1	29.05	4.6	0.62	0.32	0.035	0337	0.038		0.12	12.50	0.14	0.97	0.8.	22.05	0.257	0.15.93m	23.5	0.0
5-1	39.78	58.73	15	27.05	3.2	0.63	0.65		0.260	0.026	0.20	0.04	12.81	0.15	1.63	0.61	24.68	0.318	0.21		
5-2			7	27.52	4.0	0.55	0.32		0.197	0.018	0.24	0.07	12.35	0.15	1.47	0.01	25.9*	0.317	0.1948 m	9.0	0.0
5.3			1	27.46	4.2	0.50	0.32	0.034	0.249	0.027	0.21	0.08	12.71	0.14	1.87	0.90	26.23	0.339	0.2 Am 3 m	12.3	0.3
$6-1$	39.88	59.72	13	20.90	4.4	0.58	0.34		0.439	0.026	0.24	0.09	12.27	0.13	1.16	0.68	27.82	0.350	0.13		
6-2			5	25.85	4.6	0.5d	0.34		0.372	0.025	0.22	0.09	11.32	0.13	1.28	0.76	30.49	0.412	0.3 mm	10.1	0.0
6-3			1	23.73	3.6	0.52	0.33	0.024	0.335	0.027	0.24	0.05	10.97	0.14	1.58	0.69	37.34.	0.622	0.33 m 3 m	12.1	0.2
7	38.44	44"00.47	6	23.62	3.2	0.55	0.40		0.447	0.034	0.26	0.05	10.71	0.13	1.44	0.72	37.62	0.573	0.31	12.4	0.2
7-2			1	20.68	3.8	0.48	0.39	0.029	0.399	0.038	0.26	0.06	10.48	0.15	1.49	0.62	45.74	0.607	0.4093m	8.7	0.2

Table A.3(S)
Sheupect Data Summary - 4 May '94

slation-bottion	$\begin{aligned} & \text { Longitudo } \\ & \text { (deg-min } \mathrm{W} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Lathude } \\ \text { (deg-min } N \end{gathered}$	$\begin{gathered} \text { depth } \\ (M) \end{gathered}$	$\begin{gathered} \text { Salinity } \\ \text { (PSU) } \end{gathered}$	$\begin{gathered} \text { SPM } \\ \left(\mathrm{mgL}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { chia } \\ \left(\mu \mathrm{Q} \mathrm{~L}^{+1}\right) \end{gathered}$	$\left\|\begin{array}{c} \text { phoo } \\ \left(\mu \mathrm{q} \mathrm{~L}^{-1}\right) \end{array}\right\|$	$\begin{gathered} \text { fucoxanthin } \\ \left(\mu \mathrm{Q} \mathrm{~L}^{+1}\right) \end{gathered}$	$\left\|\begin{array}{c} \text { POC } \\ \left(\mathrm{mg}^{-1} \mathrm{~L}^{-1}\right) \end{array}\right\|$	$\begin{array}{c\|} \hline \text { PON } \\ \left(\mathrm{mqLL}^{-1}\right) \end{array}$	$\begin{gathered} P P \\ (\mu M) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { EHAAA } \\ \left(\mathrm{mg} \mathrm{~L}^{-1}\right) \end{array}$	$\left[\begin{array}{l} \mathrm{NO} 3 \\ (\mu \mathrm{M}) \end{array}\right.$	$\begin{aligned} & \mathrm{NO} 2 \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{NHA} \\ & (\mathrm{HM} \mathrm{M}) \end{aligned}$	$\binom{\mathrm{PO} 4}{(\mu \mathrm{H})}$	$\begin{aligned} & \mathrm{SO2} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{array}{\|c\|} \hline 0 D \\ \mathrm{AU}, \mathrm{n} 284 \mathrm{~nm} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{PAR} \\ & \mathrm{k}\left(\mathrm{~m}^{-1}\right) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { diatoms } \\ \left(\text { cell } 8 \mathrm{~mL}^{-1}\right) \end{array}$	$\begin{array}{\|c\|} \hline \text { dinoftag } \\ \left(\text { colls } \mathrm{L}^{-1}\right) \end{array}$
7-1	68*41.34	43051.9	40	31.83	0.4	0.74	0.39		0.103	0.021	0.12	0.049	2.10	0.08	2.18	0.54	4.68	0.164			
1-2			20	34.37	0.6	0.38	0.28		0.101	0.017	0.11	0.059	1.59	0.08	1.82	0.48	4.65	0.141			
1.3			8	30.46	0.6	0.68	0.18		0.136	0.025	0.13	0.056	1.54	0.07	1.64	0.43	7.07	0.156	0.29		
1.4			4	28.04	1.0	0.25	0.18		0.145	0.022	0.20	0.090	2.33	0.10	1.89	0.47	13.40	0.287	0.50	9.1	2.7
1-5			1	25.28	0.8	0.16	0.18	0.032	0.145	0.019	0.13	0.063	3.00	0.10	2.17	0.42	18.78	0.357	0.80	5.7	0.5
$2 \cdot 1$	41,41	53.65	22	31.58	1.4	0.37	0.35		0.116	0.019	0.12	0.083	1.92	0.09	2.22	0.50	4.92	0.124			
2-2			15	31.44	1.4	0.36	0.33		0.112	0.023	0.11	0.064	1.82	0.08	7.87	0.50	5.08	0.228			
2-3			8	28.20	2.8	0.37	0.24		0.152	0.019	0.13	0.122	2.13	0.09	2.10	0.51	9.68	0.150	0.41		
2-4			4	27.40	3.4	0.33	0.18		0.143	0.023	0.16	0.078	2.43	0.09	1.97	0.49	14.38	0.265	0.47	6.0	1.8
2-5			1	26.80	3.4	0.25	0.18	0.054	0.135	0.021	0.13	0.098	2.48	0.09	1.94	0.47	14.83	0.238	0.82	12.0	2.4
$3-1$	40.65	55.30	22	34.34	3.8	0.33	0.45		0.177	0.023	0.17	0.114	1.84	0.07	1.90	0.50	5.15	0.113			
3-2			15	30.80	4.0	0.37	0.37		0.152	0.023	0.15	0.085	1.92	0.08	2.12	0.50	0.29	0.078			
$3-3$			8	29.69	2.6	0.43	0.28		0.152	0.028	0.15	0.089	2.12	0.08	2.15	0.50	9.25	0.130	0.37		
3-4			4	28.47	1.6	0.41	0.23		0.152	0.023	0.14	0.126	2.32	0.09	2.02	0.51	11.62	0.178	0.44	13.8	1.0
3-5			1	27.32	1.4	0.28	0.17	0.046	0.181	0.023	0.14	0.084	2.47	0.10	2.10	0.51	13.80	0.177	0.47	11.7	1.2
4-1	40.48	56.25	22	30.38	3.4	0.37	0.48		0.203	0.028	0.22	0.074	2.08	0.08	2,15	0.51	7.64	0.150			
4.2			13	28.21	3.4	0.49	0.28		0.194	0.028	0.15	0.098	2.38	0.09	2.35	0.52	12.15	0.250			
4.3			9	27.02	2.6	0.45	0.22		0.185	0.025	0.17	0.074	2.53	0.10	2.15	0.51	14.53	0.258	0.34		
4-4			5	26.43	2.2	0.42	0.23		0.159	0.023	0.17	0.065	2.87	0.10	2.31	0.52	15.93	0.184	0.55	10.2	2.0
4.5			1	25.74	2.2	0.29	0.15	0.050	0.132	0.019	0.15	0.084	2.80	0.10	2.84	0,50	17.45	0.213	0.59	10.5	0.7
5-1	40.08	56.00	18	28.02	3.6	0.57	0.43		0.230	0.030	0.23	0.078	2.45	0.10	2.29	0.53	12.34	0.275			
5-2			12	27.05	2.1	0.42	0.33		0.200	0.027	0.21	0.055	2.60	0.10	2.37	0.55	14.48	0.275			
5			8	25.87	1.6	0.37	0.30		0.208	0.028	0.16	0.057	2.73	0.09	2.12	0.50	17.03	0.268	0.57		
5-4			4	24.66	1.8	0.47	0.28		0.243	0.030	0.15	0.082	2.92	0.10	2.34	0.51	18.59	0.281	0.54	10.7	1.2
5-5			1	23,66	1.6	0.39	0.72	0.034	0.178	0.023	0.18	0.058	3.08	0.12	2.25	0.48	22.40	0.344	0.59	11.6	1.8
8-1	39.29	59,32	22	$\underline{25.47}$	2.8	0.61	0.34		0.219	0.026	0.24	0.077	2.82	0.10	2.17	0.50	98.03	0.226			
6.2			15	23.33	2.0	0.84	0.26		0.209	0.029	0.22	0.092	3.03	0.10	2.26	0.49	22.34	0.420			
6-3			8	22.77	2.2	0.68	0.23		0.211	0.030	0.22	0.054	3.18	0.11	2.26	0.48	23.47	0.317			
84			4	22.05	3.6	0.68	0.25		0.225	0.031	0.23	0.081	3.36	0.13	2.38	0.52	27.65	0.393	0.63	12.3	0.9
6.5			1	21.99		0.82	0.27	0.070	0.281	0.030	0.23	0.002	3.38	0.13	2.21	0.52	25.68	0.275	0.88	20.8	1.1
7 -1	39.88	598.51	8	23.11	1.6	0.45	0.23		0.188	0.021	0.18	0.048	3.08	0.11	2.21	0.47	22.86	0.332			
7.2			4	21.02	1.7	0.69	0.21		0.201	0.029	0.22	0.060	3.10	0.11	2.38	0.51	29.76	0.403	0.66	14.9	1.0
7-3			1	20.12	3.3	0.69	0.21	0.072	0.218	0.028	0.22	0.074	3.08	0.11	2.31	0.49	28.82	0.205	0.78	12.3	1.2
$8 \cdot 1$	38.48	$44^{600} 74$	8	19.62	3.1	0.99	0.33		0.312	0.037	0.28	0.064	3.02	0.16	2.30	0.44	30.82	0.575			
8-2			4.5	17.77	3.0	0.95	0.33		0.294	0.039	0.20	0.088	2.90	0.13	2.51	0.45	33.48	0.530	0.74	16.6	1.5
8.3			2	17.64	2.7	0.92	0.34	0.086	0.281	0.033	0.24	0.070	3.24	0.12	2.50	0.48	34,28	0.341	0.72	12.8	1.8

Table A.4|S)
Sheopscot Dat
Sheopscot Data Summary - 8 Jume ' 94

[^0]

\qquad
 80管
Tible A.B(S)

station-bothe	Longitude ded-min W	Lstitude (dag-min N	depth (M)	$\begin{aligned} & \text { Salinity } \\ & \text { (PSU) } \end{aligned}$	$\begin{gathered} \mathrm{SPM} \\ \left(\mathrm{mg} \mathrm{~L}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { chla } \\ \left(\mu g L^{-1}\right) \end{gathered}$	$\begin{gathered} \text { pheo } \\ \left(1, L^{-1}\right) \end{gathered}$	$\begin{gathered} \text { Heoxanthin } \\ \left(\mu \mathrm{L} \mathrm{~L}^{-1}\right) \end{gathered}$	$\left.\begin{array}{c} \mathrm{POC} \\ \left(\mathrm{mgL}^{-5}\right) \end{array}\right]$	$\left[\begin{array}{c} \text { PON } \\ \left(m L^{-1}\right) \end{array}\right]$	$\left[\begin{array}{c} \ddot{P P} \\ (\mu M) \end{array}\right]$	$\left[\begin{array}{c} E H A A \\ \left(m L^{-1}\right) \end{array}\right]$	$\begin{aligned} & \mathrm{NO} \\ & \left(\mathrm{M} \mathrm{M}^{\prime}\right. \end{aligned}$	$\begin{array}{\|l\|} \mathrm{NO} \\ (\mu \mathrm{M}) \end{array}$	$\begin{aligned} & \mathrm{NH} \mathrm{H} / \\ & (\mathrm{\mu} \mathbf{M}) \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{POA} \\ (\mathrm{UM}) \end{array}$	$\begin{aligned} & \mathrm{s} \mid 02 \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{array}{c\|} \hline 00 \\ \text { Au } 284 \mathrm{~nm} \\ \hline \end{array}$	$\begin{aligned} & \text { PAR } \\ & k\left(m^{-1}\right) \end{aligned}$	$\begin{gathered} \text { dialoms } \\ \text { (colls } \left.\mathrm{mL}^{-1}\right) \end{gathered}$	$\left.\begin{array}{c} \text { dinoflag: } \\ \text { (cellfs } \mathrm{mL}^{-1} \text {) } \end{array}\right]$
0.1	$69{ }^{7} 41.69$	$43^{*} 49.96$	52	34.91	7.4	0.80	0.72		0.200	0.018	0.14	0.04	5.75	0.25	2.97	0.99	10.11	0.135			
0.2			30	31.82	7.0	0.82	0.79		0.197	0.026	0.14	0.07	5.06	0.22	2.83	0.94	B.88	0.095			
0-3			15	31.49	8.2	1.78	0.70		0.317	0.045	0.27	0.16	3.08	0.97	1.61	0.68	5.00	0.125			
0-4			6	30.36	90	3.62	0.97	0.211	1.198	0.132	0.52	0.42	0.18	0.05	0.31	0.27	0.19	0.200	0.53	4,636.0	13.0
0.5			1	30.36	8.8	2.44	1.44		1.130	0.095	0.00	0.27	0.21	0.08	1.00	0.26	0.11	0.162	0.29	5,608.0	6.0
1.1	41.64	52.00	40	31.86	8.6	0.78	0.78	0.242	0.213	0.020	0.15	0.08	5.65	0.28	3.81	1.03	8.92	0.092			
1-2			15	31.37	7.8	1.31	0.65		0.450	0.045	0.22	0.10	2.72	0.23	0.65	0.58	8.43	0.206			
1-3			8	30.04	8.6	2.25	0.79		0.495	0.062	0.30	0.18	3.75	0.23	0.91	0.69	7.33	0.187	0.33		
1.4			5	29.58	8.0	2.44	0.97	0.531	0.518	0.073	0.37	0.31	4.41	0.21	2.37	0.83	0.05	0.121	0.44	2,393.0	0.0
1.5			1	29.21	8.4	2.25	1.08		0.729	0.090	0.37	0.28	3.01	0.21	0.54	0.83	0.81	0.215	0.42	1,725.0	3.0
2-1	41.27	54.04	20	31.63	9.2	0.98	0.77		0.257	0.025	0.22	0.15	5.02	0.25	2.80	0.92	9.22	0.154			
2-2			10	30.37	8.8	1.58	0.68		0.307	0.040	0.27	0.14	3.82	0.24	1.52	0.82	7.99	0.174	0.32		
2-3			5	29.43	9.0	1.94	0.64	0.483	0.479	0.057	0.34	0.20	388	0.25	0.85	0.74	8.41	0.020	0.46	895.5	0.5
2-4			1	28.84	9.2	2.09	0.67		0.693	0.076	0.35	0.20	3.80	0.25	0.67	0.68	8.27	0.232	0.54	869.5	0.5
3 -1	40.57	55,38	20	31.34	12.0	0.84	0.93		0.381	0.038	0.30	0.06	4.84	0.22	2.87	0.89	9.11	0.122			
3.2			10	30.17	12.3	1.19	0.77		0.350	0.042	0.30	0.12	4.44	0.26	1,72	0.82	8.37	0.184			
3.3			5	29.56	6.8	1.70	0.83	0.547	0.430	0.060	0.34	0.19	3.68	0.23	1.15	0.76	7.89	0.247	0.49	762.2	0.6
3.4			1	29.23	7.1	1.86	0.68		0.456	0.060	0.31	0.19	3.89	0.24	0.89	0.73	8.67	0.225	0.47	670.4	0.8
$4 \cdot 1$	40.43	56.30	18	30.50	7.8	1.00	0.73	0.446	0.284	0.052	0.27	0.11	4.56	0.24	2.27	0.89	0.31	0.160			
4-2			9	29.60	7.6	1.74	0.74		0.580	0.110	0.35	0.21	4.26	0.25	1.43	0.81	0.30	0.205	0.44		
4.3			5	29.52	7.4	1.66	0.72	0.581	0.626	0.114	0.31	0.26	4.25	0.24	1.15	0.74	8.15	0.201	0.46	726.6	0.4
$4 \cdot 4$			1	29.12	7.3	1.83	0.58		0.482	0.000	0.27	0.18	4.25	0.26	1,43	0.79	10.15	0.255	0.32	375.6	0.8
$5 \cdot 1$	40.01	58.10	16	29.94	3.1	1.08	0.70		0.349	0.000	0.27	0.09						0.201			
5.2			10	29.55	2.0	1.31	0.70		0.380	0.000	0.32	0.14	4.21	0.28	1.41	0.77	9.77	0.218			
5.3			5	29.19	1.1	1.43	0.82	0.379	0.457	0.000	0.30	0.16	4.38	0.32	1.33	0.80	10.26	0.216	0.44	391.8	0.4
5-4			1	28.45	0.9	1.51	0.89		0.488	0.055	0.29	0.15	4.34	0.32	2.01	0.93	44.35	0.246	0.28	190.0	0.4
$6-1$	39.26	59.36	19	28.84	2.3	1.11	0.80		0.447	0.050	0.35	0.11	4.07	0.27	1.73	0.62	10.88	0.243			
$0-2$			10	28.78	1.4	1.43	0.82		0.537	0.064	0.35	0.16	4.35	0.28	1.67	0.81	11.62	0.297			
6-3			5	27.79	1.4	4.04	0.74	0.232	0.386	0.047	0.32	0.11	3.85	0.27	1.78	0.83	10.69	0.260	0.51	247.0	0.0
0.4			1	26.65	0.6	1.88	0.81		0.629	0.079	0.29	0.23	4.65	0.29	1.52	0.77	12.06	0.368	0.47	103.4	0.2
M 1	40.19	58.77	1	26.64	0.9	1.43	0.86		0.577	0.062	0.35	0.15	3.80	0.26	2.05	0.87	11.81	0.416			
7 7-1	39.73	59.83	4	26.85	1.1	1.43	0.72	0.440	0.463	0.052	0.29	0.17	3.55	0.32	1.28	0.76	12.17	0.296		133.8	0.2
7.2			1	28.02	0.6	4.74	0.74	0.323	0.423	0.061	0.33	0.23	3.27	0.30	1.88	0.75	12.85	0.383	0.52	76.0	0.0
$8-1$	30.47	44\%0.68	6	25.71	3.7	7.54	0.84		0.593	0.075	0.53	0.16	2.90	0.29	1.13	0.71	13.28	0.389		90.0	0.5
0.2			1	25.65	2.3	2.05	0.84	0.466	0.755	0.092	0.58	0.24	1.75	0.30	0.96	0.67	13.45	0.417	0.58	56.0	0.6
9.1		zodlic	0.5	22.11	3.2	4.74	0.69	0.531	0.584	0.072	0.42	0.17	1.64	0.23	0.62	0.56	14.78	0.673		39.8	0.2
10.1		zoding	0.5	22.45	1.2	1.97	0.88	0.532	0.493	0.066	0.36	0.17	1.20	0.21	1.51	0.52	14.74	0.697		42.4	00
11.1		zodlac	05	17.47	0.8	8.43	0.72	0.332	0396	0.053	0.33	0.14	1.51	0.05	0.88	0.43	15.05	0.803		28.6	0.0
12-1		zodlac	0.5	24.74	1.2	1.54	056	0069	1.021	0.128	0.83	0.29	1.51	0.14	0.98	3.23	11.26	0.546		42.8	00

Sheepscot Data Summary - 31 August '94

Table A. $\{\{\mathrm{K}\}$
Kennebec Data Summary - 1 Sopt '94

Table A. $3(\mathrm{~K})$
Kennebec Data Summary - 5 May '94

$\frac{\text { stallon-botic\| }}{0.1}$		$\left\lvert\, \begin{gathered} \text { Latitudo } \\ \text { (dgag-min } N \end{gathered}\right.$	$\left[\begin{array}{l} \text { dopth } \\ (M) \end{array}\right.$	$\begin{aligned} & \text { Salinity } \\ & \text { (PSU) } \end{aligned}$	$\begin{gathered} \text { SPM } \\ \left(\mathrm{mgL} \mathrm{~L}^{-1}\right. \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline\left(\mu_{g} L^{-1}\right. \end{array} \right\rvert\,$		$\begin{gathered} \text { iucoxanIthing } \\ \left(\mu \mathrm{g} \mathrm{~L}^{\prime}\right) \end{gathered}$		$\left\lvert\, \begin{gathered} \mathrm{PON} \\ \left(\mathrm{mgl}^{-1}\right) \\ \mathrm{SOCl}^{-1} \end{gathered}\right.$	$\begin{array}{\|c\|} \hline P P \\ (\mu \mathrm{M}) \\ \hline \end{array}$	$\begin{gathered} \text { EHAA } \\ \left(\mathrm{mg} \mathrm{~L} \mathrm{~L}^{-1},\right. \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{NO} \\ & (\mu M) \end{aligned}$	$\begin{aligned} & \mathrm{NOZ} \\ & (\mathrm{NM}) \end{aligned}$	$\begin{gathered} \begin{array}{c} \mathrm{NH} 4 \\ (\mathrm{LM}) \end{array} \\ \hline 0 \end{gathered}$	$\begin{aligned} & P \overline{O A} \\ & (\mu M 2) \end{aligned}$	$\begin{aligned} & \mathrm{SiO2} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{gathered} O D \\ A U S 284 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & \text { PAR } \\ & \mathbf{h}\left(m^{-1}\right) \end{aligned}$	$\begin{gathered} \text { diatams } \\ \text { (colls } \left.\mathrm{mL}^{-1}\right) \end{gathered}$	dilnoflag. (eols mL-1)
0.1	69*48.25	$43^{*} 44.79$	11	29.76	1.2	3.49	0.39		0.315	0.051	0.17	0.181	1.00	0.08	0.93	0.38	7.13	0.195			
$0-2$			6	29.37	1.0	3.25	0.24		0.453	0.061	0.13	0.104	0.99	0.07	0.97	0.35	8.14	0.180	0.35	15.4	0.2
0.3			1	29.28	1.6	3.05	0.41	0.300	0.180	0.023	0.21	0.139	1.02	0.08	0.88	0.32	8.83	0.227	0.47	63.2	0.3
1.1	47.09	46.30	13	29.41	1.4	274	0.34		0.401	0.053	0.35	0.129	1.53		0.90	0.33		0.366			
1.2			5	31.69	2.8	4.38	0.37		0.312	0.067	0.25	0.167	1.25	0.06	0.99	0.30	12.23	0.239	0.49		
1-3			2.5	23.87	1.5	3.51	0.50	0.229	0.556	0.058		0.174	210	0.06	1.09	0.29	18.71	0.470	0.47	95.4	0.2
1-4				19.41	4.0	2.19	0.54		0.384	0.047	0.22	0.140	3.48	0.07	0.98	0.28	30.10	0.393	1.01	121.2	1.8
$2-1$	47.41	46.68	11	2932	2.3	2.84	0.47		0.420	0.047	0.28	0.110	0.90	0.08	0.77	0.30	7.28	0.485			
2-2			3	16.57	2.0	2,82	0.36		0.540	0.053	0.20	0.122	3.86	0.07	1.22	0.30	30.03	0.816			
$2 \cdot 3$			2	13.02	0.6	1.43	0.39	0.195	0.591	0.051	0.27	0.085	4.62	0.07	1.17	0.26	39.77	1.319			
2-4			1	13.01	2.0	1.66	0.44	0.188	0.475	0.044	0.23	0.090	4.63	0.08	1.23	0.27	40.75	0.506		47.4	0
$3-1$	47.43	46.56	7	27.50	4.5	2.87	0.69	0.560	0.461	0.053	0.28	0.133	1.55	0.07	1.01	0.31	10.69	0.293		4.8	
$3 \cdot 2$			5	20.22	31.	5.32	0.67		0.673	0.075	0.24	0.159	2.87	0.07	0.95	0.30	26.52	0.460			
3-3			3	12.56	3.2	1.82	0.84		0.559	0.054	0.28	0.110	4.88	0.08	1.44	0.27	39.54	0.509	0.99	71.5	1.3
3-4			1		4.4	1.26	0.35	0.100	0.377	0.043	0.22	0.125	5.45	0.11	$\begin{array}{r}\text { + } 47 \\ \hline\end{array}$	0.26	44.77	0.945	1.24	74.0	1.0
4.1	47.53	50.99	15	14.26	15.6	231	0.58		0.782	0.083	0.55	0.156	4.48	0.09	1.43	0.32	37.73	0.750		74.0	
4.2			10	14.16	7.6	2.42	0.70		0.739	0.078	0.40	0.171	4.49	007	1.48	033	37.84	0.861			
4.3			5	9.01	8.0	1.36	0.69		0.608	0.062	0.39	0.109	5.81	0.08	1.47	0.30	46.34	0.932		66.5	
4-4			1	7.74	6.4	1.22	05 !	0.150	0.424	0.046	0.30	0.129	6.23	0.08	1.36	0.28	47.64	1.062	1200	84.4	1.4
5-2	47.79	52.42	17	7.10	8.4	1.45	0.92		0.829	0088		0.127	6.21	008	1.42	0.30	48.71	0.959			
5-2			10	509	7.0	1.05	0.54		0.508	0.056		0.097	6.95	0.10	1.48	0.33	52.15	1048			
5-3			5	3.84		0.88	0.50		0517	0.054			7.05	0.09	1.35	0.29	54.29	1.059		48.1	2.4
5-4			:	3.29	6.5	0.78	0.39	0.179	0.429	0.049	0.60	0.095	7.18	0.09	1.28	0.27	54.02	0.748	1.39	48.9	1.9
8.1	48.61	54.08	12	2.83		1.08	0.54		0.649	0.071	0.54	0.098	7.46	0.09	1.25	028	54.03	+103			
8-2			9		8.7	1.12	0.46		0.592	0.062	0.40	0.099	8.43	0.09	1.55	0.88	33.40	1.137			
8.3			6	0.20	53	1.10	0.43		0.599	0.066	0.48	0.100	0.51	0.08	1.03	0.47	34.67	1.154		330	1.9
6.4			,	0.00	3.3	1.15	0.38	0.180	0.481	0.053	0.44	0.128	8.61	0.08	0.76	0.37	19.60	1.161	1.47	36.2	2.3
7.1	48.53	55.19	13	0.00	4.7	1.44	0.49		0.840	0.065	0.49	0.106	8.47	0.08	0.68	0.34	20.15	1.181		41.6	1.5
7.2				0.00	3.3	136	0.44		0.836	0.065	0.50	0.140	8.58	0.09	0.63	0.32	15.43	1.141	1.41	54.5	2.0
8-1 $8-2$	48.8	55.98	19	0.00	7.3	1.41	0.47		0.835	0.070	0.52	$0.1+7$	8.31	0.08	0.58	0.33	13.10	1.152		46.6	1.3
			1	0.00	5.3	1.35	0.45		0.542	0.077	0.49	0.10 \%	8.25	0.08	0.63	0.30	27.54	$\uparrow .164$	1.45	35.5	1.3

Table A.4!Ki
Kennebec Dala
Kennebee Dala Summary - 9 Jume 'Sd

station. botile	Longituda deg-min W	$\left[\begin{array}{c} \text { Latitude } \\ \text { (dog.m } \ln \mathrm{N} \end{array}\right]$	$\left[\begin{array}{c} \left(\begin{array}{c} \text { depl } \\ (M) \end{array}\right. \\ \hline \end{array}\right.$	$\begin{gathered} \text { Sal linity } \\ \text { (PSU) } \end{gathered}$	$\begin{gathered} \text { SPM } \\ \left(m L^{\prime-1}\right. \end{gathered}$	$\begin{gathered} \mathrm{ch} \mathrm{a} \\ \left(\mu \mathrm{~g} \mathrm{~L}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { pheo } \\ \left(p q L^{-1}\right. \end{gathered}$	$\begin{gathered} \text { hecoxanthin } \\ \text { (in } \left.L^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{POC} \\ \left(\mathrm{mP} \mathrm{~L}^{-1}\right) \end{gathered}$	$\left\lvert\, \begin{array}{\|c\|} \hline \mathrm{PON} \\ \left(\mathrm{mg} \mathrm{~L}^{-1}\right) \end{array}\right.$	$\underset{\left(\left.\begin{array}{c} \bar{\rho} \bar{P} \\ (\mu M) \end{array} \right\rvert\,\right.}{ }$	$\begin{array}{\|c\|} \hline \mathrm{HAA} \\ \left(\mathrm{~m}, \mathrm{~L}^{-1}\right) \end{array}$	$\begin{aligned} & \$ \mathrm{NOS} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{NO2} \\ & (\mathrm{pH}(\mathrm{H}) \end{aligned}$	$\begin{aligned} & \mathrm{NH} 4 \\ & (\mathrm{M}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{POA} \\ & (\mu \mathrm{M}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{SiO} 2 \\ & (\mathrm{~N}) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { OD } \\ \text { mu } 284 \mathrm{~mm} \end{array}$	$\begin{aligned} & \text { PAR } \\ & \mathbf{k}\left(\mathrm{m}^{-1}\right) \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { diatoms } \\ \text { (cells } \mathrm{mL}^{-1} \text {) } \end{array} \end{gathered}$	diriofiag. (cols mL^{-1})
0.1	69*45.90	$43^{4} 44.33$	10	31.60	1.2	8.85	2.15		0.413	0.052	0.28	0.18	1.78	0.11	0.76	0.41	2.53	0.144			
0.2			6	30.40	1.8	8.40	1.20	0.835	0.591	0.090	0.31	0.25	0.63	0.07	0.17	0.20	1.39	0.186	0.36	1,171.0	11.0
$\frac{0}{1 \cdot 1}$,	27.65	2.0	4.07	0.51		0.404	0.064	0.28	0.19	1.52	0.11	0.94	0.36	1.49	0.343	0.52	709.5	2.5
1.1	47.05	46.06	15	29.70	3.2	6.11	2.42	1.159	0.678	0.077	0.40	0.27	0.81	0.13	0.42	0.32	3.67	0.201			
1-2			10	29.13	2.8	6.73	2.02		0.675	0.088	0.33	0.24	0.87	0.06	0.46	0.35	7.99	0.219	0.35		
1.4			6	28.10	4.0	5.30	1.11	1.009	0.579	0.075		0.25	0.99	0.17	0.89	0.32	6.12	0.255	0.46	866.0	8.0
2.1	4723		1	30.11	2.6	5.52	1.35		0.582	0.067	0.34	0.32	1.24	0.11	1.11	0.32	4.54	0.288	0.43	731.5	8.5
22	47.25	47.14	19	29.52	1.6	10.16	1.04		0595	0071	0.36	0.37	0.91	0.08	0.53	0.39	5.50	0241			
$2 \cdot 3$			7	29.35	3.0	6.94	1.56	0.985	0.595	0.071	0.33	0.37	0.95	0.09	0.68	0.41	5.47	0.252	0.18	875.0	6.5
3.1	$47 . \overline{45}$	48.44	10	24.68	2.6	4.34	0.89		0.447	0.050		0.29	2.63	0.09	1.71	0.47	16.21	0.426	0.67	667.5	4.0
3.2			5	25.80	38	4.79	1.72		0.621	0.067	0.44	0.28	1.81	0.11	157	0.37	31.43	0.403			
3-3			2.5	19.05	4.5	2.24	0.98	0.239	0.495	0.043	0.34	0.21	4.46	0.12	3.35	0.46	36.99	0.675	0.49	210.0	0.0
$3-4$			1	15.58	3.2	1.63	1.07		0.384	0.035	0.29	0.15	4.16	0.17	3.13	0.62	6.99	0.793	0.86	179.5	0.0
4.1	47.51	51.09	10	19.05	10.5	2.42	3.94	0.409	0.642	0.056		0.13	3.37	0.10	2.99	0.47	32.93	0.593			
4.2			5	16.64	6.3	1.68	1.82		0.589	0.056		0.19	4.01	0.14	3.50	0.56	39.55	0.700	0.90		
4.3			3	10.52	5.5	1.13	1.49	0.210	0.475	0.043	0.34	0.10	4.97	0.15	3.26	0.48	49.54	0.891	0.94	1050	0.5
4-4			1	9.88	5.1	1.13	1.49		0.414	0.033	0.33	0.16	5.15	0.14	3.45	0.48	27.90	0.905	0.93	84.5	0.0
$5-1$	47.75	S2.52	20	14.56	6.4	1.78	2.56		0.712	0.058	0.59	0.16	4.37	0.17	3.46	0.54	37.25	0.766			
5-2			15	14.08	2.4	1.41	2.29		0.625	0.052	0.48	0.19	4.40	0.13	3.51	0.52	38.25	0.805			
$5-3$			10	13.68	4.0	1.49	2.10		0.570	0.050	0.57	0.19	4.53	0.13	3.58	0.54	36.48	0.802			
5-4			5	13.28	3.6	1.35	1.86	0.221	0.643	0.053	0.45	0.17	4.55	0.13	3.56	0.51	38.73	0.856		254.0	0.0
5.5			1	12.77	2.3	1.21	1.62		0.545	0.045	0.37	0.16	4.64	0.16	3.48	0.50	37.53	0.830	1.09	980	00
6-1	48.57	54.22	10	8.75	1.6	1.67	2.23		0.772	0.063	0.58	0.18	5.41	0.17	3.26	0.48	43.03	0.677			
6-2			5	7.44	3.6	1.57	1.80	0.198	0.585	0.054	0.44	0.21	5.63	0.16	3.23	0.45	44.17	1.12 \dagger		92.5	0.0
$6-3$			1	6.28	4.8	1.47	4.88		0.521	0.049		0.21	5.86	0.17	3.29	0.43	43.48	1.071	1.26	72.4	0.0
7.1	48.47	55.18	10	6.84	3.2	1.82	2.06	0.224	0.655	0.059	0.55	0.12	5.72	0.16	3.35	0.44	45.18	1.009			
72			5	5.87	40	1.67	1.71	0.283	0.576	0.054	0.44	0.12	5.87	0.17	3.27	0.43	44.29	1.029		83.5	0.0
7.3			1	5.58	32	1.55	1.69		0.494	0.048	0.39	0.19	5.87	0.16	3.13	0.40	43.47	1.048	1.99	63.4	0.0
- 0	48.73	55.94	10	2.72	8.0	3.20	320		0.772	0.074	0.69	0.26	6.07	0.15	2.35	0.28	51.52	0.902		126.0	0.0
8.2			1	1.70	8.4	4.35	291	0.619	0.758	0.082	0.71	0.25	6.14	0.18	2.29	0.30	41.73	9.152	2.75	115.0	0.2
9-1	49.61	58.7	15	0.21	13.20	0.63	454		1.469	0.162	1.84	0.34	6.45	0.13	0.80	0.22	47.75	1.126		385.0	0.0
$9-2$			1	0.18	7.50	9.74	2.64	1.343	0.674	0076	0.83	026	5.03	0.18	0.98	0.21	54.29	1.170	1.89	198.0	0.0

Tabla A.E (K)

station-bottle	$\begin{aligned} & \text { Longilude } \\ & \text { deg-min } W \end{aligned}$	$\left\{\begin{array}{l} \text { Latilude } \\ \text { (deg-min } \mathrm{N} \end{array}\right.$	$\left\|\begin{array}{c} \text { depth } \\ (\mathrm{M}) \end{array}\right\|$	$\begin{aligned} & \text { Salinity } \\ & \text { (PSU) } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SPM } \\ \left(m g L^{-1}\right) \\ \hline \end{gathered}\right.$	$\begin{gathered} \text { chl a } \\ \left(\mu g \mathrm{~L}^{-1}\right. \end{gathered}$	$\left[\begin{array}{c} \text { pheo } \\ \left(\mu \mathrm{L} L^{-1}\right\} \end{array}\right]$	$\begin{aligned} & 7 \text { fuecxanthln } \\ & \left(\mu \mathrm{L} \mathrm{~L}^{-1}\right) \end{aligned}$	$\begin{gathered} \text { POC } \\ \left(m L^{-1}\right) \end{gathered}$	$\left\lvert\, \begin{gathered} \text { PON } \\ \left(m g L^{-1}\right) \end{gathered}\right.$	$\begin{gathered} P P \\ (\mu \mathrm{~N}) \end{gathered}$	$\left.\begin{array}{\|c\|} \text { EHAA } \\ (\mathrm{mg} \mathrm{~L} \end{array} \right\rvert\,$	$\left[\begin{array}{l} \mathrm{NOS} \\ (\mu \mathrm{M}) \end{array}\right]$	$\left[\begin{array}{l} \mathrm{NO} 2 \\ (\mathrm{HM}) \end{array}\right]$	$\begin{aligned} & \mathrm{Ni}+44 \\ & (\mu \mathrm{M}) \end{aligned}$	$\left[\begin{array}{l} \mathrm{PO} \\ (\mu \mathrm{M}) \end{array}\right]$	$\begin{aligned} & \mathrm{sio} \\ & (\mu \mathrm{M}) \end{aligned}$	$\text { AU } 00$	$\left[\begin{array}{l} \overline{F A R} \bar{k} \\ k\left(m^{\prime+}\right) \end{array}\right]$	$\begin{gathered} \text { diatoms } \\ \text { (cells } \left.\mathrm{mL}^{-1}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { dinoflag. } \\ \text { (cells } \left.\mathrm{mL}^{-1}\right) \end{array}$
$0-1$	$69^{*} 45.36$	43.44.01	14	31.84	1.3	3.77	0.86		0.457	0.060	0.30	0.28	0.52	0.09	0.59	0.34	0.44	0102	0.14		
0.2			8	31.25	2.7	1.06	0.60		0.487	0.046	0.22	0.16	0.09	0.04	1.25	0.05	0.01	0.127	0.20		
$0-3$			3	28.74	0.7	3.69	\$.31	0.296	0.874	0.093	0.47	0.36	0.14	0.04	1.57	0.13	0.29	0.217	0.55	5,283.5	9.0
0-4			1	27.25	2.0	3.42	0.79		0.830	0.105	1.00	0.31	0.20	0.04	t.87	0.24	0.55	0.282	0.22	4.548.5	13.0
1-1	47.18	48.29	13	30.71	3.3	2.60	0.85	1.013	0.574	0.096	0.30	0.30	0.39	0.08	0.58	0.23	0.35	0.160			
1-2			9	29.92	0.7	2.72	1.08		0.818	0.097	0.36	0.29	0.22	0.06	0.52	0.23	0.29	0.174	0.23		
$1-3$			5	29.08	5.3	2.83	0.95	0.551	0.813	0.100	0.36	0.36	0.23	0.08	0.55	0.21	0.24	0218	0.40	2,468.0	13.0
1-4			1	28.42	7.3	2.60	1.10		0.748	0.090	0.38	0.27	0.27	0.05	0.04	0.20	0.40	0.261	0.44	2.260 .5	11.5
2-1	47.23	47.13	9	29.50	7.3	2.91	1.07		0.732	0.091		0.27	0.23	0.06	0.29	0.20	0.33	0.189	0.35		
$2 \cdot 2$			4	28.05	6.7	2.64	0.87	0.610	0.816	0.090	0.35	0.27	0.43	0.06	0.77	0.20	0.91	0.274	0.51	2.076 .0	17.0
2-3			1	19.24	6.0	1.70	0.87		0.598	0.071	0.33	0.18	1.47	0.13	1.78	0.37	2.34	0.651	0.40	962.5	1.5
3-1	47.52	$48.5 \uparrow$	9	29.21	8.0	2.56	1.14		0.566	0.081	0.45	0.22	0.39	0.05	0.83	0.24	032	0.209			
$3-2$			5	24.17	6.0	2.21	1.26	0.937	0.607	0.088	0.45	0.28	1.08	0.09	1.25	0.28	1.63	0.465	0.58	1,676.0	4.5
3-3			1	17.82	8.0	1.94	1.15		0.867	0.100	0.47	0.23	1.81	0.15	2.28	0.48	2.94	0.484	0.48	897.5	1.0
4.1	47.65	51.10	14	21.84	5.9	2.17	1.95	1.490	0.740	0.095	0.61	0.29	1.94	0.14	2.22	0.49	1.98	0.389			
4-2			7	18.47	8.7	1.78	1.64	0.881	0.8897	0.079	0.48	0.16	2.16	0.19	2.78	0.49	2.76	0.417	0.79	852.8	3.0
$4 \cdot 3$			1	11.62	9.4	1.43	1.47	0.563	0.637	0.069	0.43	0.17	3.00	0.21	3.61	0.38	4.19	0.597	0.47	294.6	1.4
5-1	47.74	52.10	15	15.74	10.2	1.97	1.30		0.600	0.077	0.54	0.14	2.74	0.22	3.43	0.45	3.34	0.458			
5-2			11	14.47	10.5	1.47	1.95		0.552	0.070	0.51	0.14	2.94	0.22	3.69	0.48	3.91	0.553			
5-3			6	12.59	10.8	1.43	1.90	0.802	0.504	0.066	0.45	0.13	3.09	0.26	3.99	0.43	4.02	0.887		316.4	0.6
5-4			1	12.07	10.4	1.39	1.89		0.538	0.071	0.48	0.13	3.20	0.21	3.88	0.41	4.12	0.751	0.77	347.6	1.4
B-1	48.5	54.29	11	10.53	93	1.27	2.85		0.562	0.072	0.61	0.14	3.16	0.19	3.26	0.31	5.80	0.965			
$6-2$			B	7.27	10.0	1.35	2.44	0.833	0.450	0.059	0.43	0.11	2.64	0.19	3.58	028	4.93	0.674		102.4	0.2
6-3			1	8.87	12.0	1.43	2.13		0.500	0.061	0.41	0,40	3.15	0.18	3.10	0.21	4.55	0.703	0.54	80.6	0.0
7-1	48.45	55.22	11	6.43	13.2	1.51	3.77		0.693	0.094	0.87	0.18	2.33	0.23	5.94	0.33	5,19	0.878			
7.2			5	3.60	12.4	3.23	2.77	1.841	0.787	0.098	0.69	0.16	2.21	0.21	2.43	0.25	4.92	1.19		138.5	0.0
7.3			1	2.58	22.0	3.77	2.78		0.815	0.109	0.73	0.18	2.19	0.22	2.13	0.22	4.91	0.963	0.97	147.5	0.0
6-1	48.60	56.95	20	2.17	347	388	6.24		1.678	0.202	1.52	0.28	1.68	0.21	1.99	0.23	5.37	1.211		210.0	0.0
B-2			1	1.18	44.0	4.48	3.35	6.010	1.811	0.210	1.52	0.29	0.44	0.20	1.41	0.18	5.25	0.945	0.85	226.5	0.0
9.1	50.04	59.04	1	0.01	360	9.75	2.72	10.398	2.236	0.282	3.28	0.69	0.00	0.17	0.44	0.16	5.99	1.305	1.32	391.5	0.0

Table A.s(K)
Kennebec Data Summary - 1 Sept 94

station-bottie	$\begin{gathered} \text { Longitude } \\ \text { dengimin } W \end{gathered}$	$\left[\begin{array}{c}\text { Latilude } \\ \text { dotep-min } \mathrm{N}\end{array}\right.$	$\mathrm{dapin}_{(\mathrm{M})}$	Seninity (PSU)	$\int \begin{gathered} \text { spin } \\ \left(\mathrm{mgLt}^{-1}\right) \end{gathered}$	$\begin{gathered} c \mathrm{ch} \\ \left(\mathrm{pg} \mathrm{~L}^{\prime}\right. \end{gathered}$	$\begin{gathered} \hline \text { Who } \\ \left(\cos ^{-1} t^{-1}\right. \end{gathered}$	$\begin{gathered} \text { (hecoxanthin } \\ \left(\log ^{-1} \mathrm{~L}^{-1}\right) \end{gathered}$	$\int \begin{gathered} \mathrm{POC} \\ (\mathrm{GLL} \end{gathered}$	$\left[\begin{array}{c} \mathrm{PON} \\ \left(\mathrm{mgL}^{-1}\right) \end{array}\right.$	$\begin{aligned} & \mathrm{PP} \\ & (\mu \mathrm{M}) \end{aligned}$	$\underset{\left(\mathrm{mgL} \mathrm{~L}^{-1}\right)}{\mathrm{EHAA}}$	$\left[\begin{array}{l} \mathrm{NO} 3 \\ (\mu \mathrm{~L}) \end{array}\right.$	$\left[\begin{array}{l} \mathbf{N O O}_{2} \\ (\mathrm{H} / \mathrm{M}) \end{array}\right]$	$\begin{aligned} & \mathrm{NHA} \\ & (\mu(M) \end{aligned}$	$\begin{aligned} & \text { PO4 } \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{SK2} \\ & (\mu \mathrm{MA} \end{aligned}$	$\begin{gathered} 00 \\ \text { Au Res nm } \\ \hline \end{gathered}$	$\begin{aligned} & \text { PAR } \\ & k\left(\mathrm{~m}^{-1}\right) \end{aligned}$	$\left\lvert\, \begin{gathered} \left.\begin{array}{c} \text { dintoms } \\ \text { cothe } \mathrm{mL}^{-3} \end{array} \right\rvert\, \end{gathered}\right.$	
0.1	69×46.16	43'44.81	$1{ }^{19}$	$\underline{32.12}$	0.4	1.23	0.87		0.159	0.021	0.12	0.00	5.21		0.69	0.83		0.252			
0.2			10	31.87	1.4	2.17	0.65		0.321	0.050	0.19	0.14	0.00					0.248	0.29		
0.3			5	30.95	0.8	2.80	0.83		0.427	0.061	0.23	0.22	2.01	0.28	0.96	0.71	6.31	0.321	0.24	4322.0	12.0
0-4			1	29.89	1.6	2.76	0.52	1.138	0.462	0.068	0.28	0.22	1.51	0.24	0.77	0.59	5.42	0.351	0.65	4150.0	15.0
${ }^{\text {¢ }}$	47.17	48.28	15	31.52	1.0	2.05	0.90	1.165	0.358	0.047	0.20	0.21	3.70		1.45	0.56		0.263			
1-2			10	31.27	0.6	2.13	0.62		0.397	0.050	0.23	0.14	3.43		0.92	0.72		0.249	0.27		
1.3			5	30.24	0.3	2.01	0.75	0.757	0.371	0.047	022	0.20	2.80	0.35	1.48	0.72	7.51	0.330	0.28	2158.0	4.0
$1 \cdot 4$			1	25.4	1.1	1.31	0.75		0.291	0.038	0.18	0.10	2.82	0.32	2.78	0.75	7.68	0.497	0.46	1104.0	8.0
$2 \cdot 1$	47.22	47.24	11	30.62	1.1	2.64	0.87		0.438	0.062	0.22	0.21	2.30	0.29	0.85	0.60	6.48	0.308	0.18		
$2 \cdot 2$			5	29.85	1.7	2.44	0.79	1.059	0.574	0.088	0.28	0.19	2.28	0.28	1.21	0.66	6.68	0.418	0.27	2327.0	3.0
$2 \cdot 3$			1	25.85	1.7	1.82	0.76		0.478	0.055	0.27	0.18	2.87	0.32	2.42	0.75	7.33	0.520	0.68	1124.0	0.0
3 3-1	47.46	48.42	8	29.22	2.0	2.09	0.68		0.315	0.043	0.24	0.18	2.87	0.35	1.44	0.70	7.52	0.252	0.09		
$3-2$			4	25.65	2.0	1.47	0.78	0.731	0.391	0.045	0.21	0.13	2.86	0.34	2.73	0.80	7.88	0.359	0.45	907.0	3.5
3.3			1	22,93	1.4	1.11	0.85		0.392	0.045	0.18	0.12	2.82	0.32	3.52	0.85	7.98	0.568	0.50	228.0	2.0
4.1	47.72	51.28	12	22.75	2.9	1.27	1.21	0.438	0.353	0.038	0.24	0.11	2.86	0.31	3.30	0.62	7.60	0.564			
4.2			5	20.90	2.0	1.04	1.02	0.355	0.405	0.039	0.25	0.11	2.78	0.33	4.28	0.01	7.39	0.589	0.52	390.0	0.0
4.3			1	19.41	2.3	1.06	1.12		0.367	0.041	0.25	0. 10	2.68	0.31	4.15	0.82	7.27	0.773	0.59	308.0	0.0
5-1	47.79	52.62	15	18.38	3.7	1.04	1.49		0.490	0.050	0.32	0.10	2.59	0.29	3.88	0.79	8.59	0.592			
5-2			8	10.50	3.1	0.92	1.47	0.248	0.425	0.045	0.28	0.10	2.44	0.29	4.11	0.78	6.64	0.620		240.0	0.5
$5 \cdot 3$			1	18.38	3.1	1.05	1.26		0.432	0.055	0.27	0.09	2.49	0.29	4.18	0.80	6.97	0.807	0.98	219.0	0.0
6.1	48.62	54.28	10	12.70	4.6	0.96	1.65		0.478	0.051	0.33	0.10	2.50	0.24	4.42	0.62	6.97	0.943			
8.2			5	10.85	5.2	1.19	1.00	0.347	0.491	0.052	0.39	0.13	1.69	0.18	3.48	0.81	5.01	0.002		140.5	0.0
8.3				9.52	3.6	1.74	2.05		0.523	0.062	0.43	0.15	2.03	0.19	4.01	0.89	6.08	0.090	1.16	220.0	0.0
7 -1	48.49	55.46	10	10.55	5.6	1.31	2.25		0.626	0.073	0.58	0.13	2.15	0.20	4.51	0.80	8.30	0.678			
7-2			5	8.00	8.0	1.43	2.74	0.686	0.697	0.078	0.61	0.18	2.05	0.20	4.45	0.84	6.13	0.978		563.5	0.0
7.3			1	7.09	8.4	1.82	2.44		0.829	0.081	0.56	0.19	1.71	0.17	3.80	0.78	5.47	1.098	1.23	337.5	1.0
8-1	48.83	56.89	24	8.09	14.4	2.37	3.18	1.229	1.088	0.122	1.00	0.28	1.33	0.15	3.48	0.88	4.76	0.999			
$8-2$			15	5.55	14.0	2.60	2.90		1.040	0.121	1.02	0.23	1.48	0.17	3.76	0.72	5.40	0.877		597.0	0.0
8.3				4.70	7.2	3.11	2.94	1.276	1.089	0.429	0.04	0.29	1.27	0.15	3.30	-0.69	4.78	1.023	2.13	225.0	0.0
9-1	49.24	$44^{\circ} 00.13$	*	0.70	11.2	4.95	4.38	3.520	1.478	0.190	1.42	0.37	0.0					1.180	1.62	2235.5	1.0

Table A. 7 (K-A) Kennebec Data Summary - 16-17 Sept'95 High Tide

Table A. 7 (K-B) Kennebec Data Summary - 16-17 Sept'gs Ebbing Tide

Table A.7(K-C) Kennebec Data Summary - 16-17 Sept '95 Low Tide

Station	$\begin{array}{\|c\|} \hline \text { Long. } \\ \text { (deg-min } W \end{array}$	Lat. (deg-min N)	Fosition in the charnel	$\begin{gathered} \text { Depth } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \text { Salinity } \\ (\rho s \mathrm{~s}) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SPM } \\ \left(\mathrm{mgL}^{-1}\right) \\ \hline \end{array}$	$\begin{aligned} & C^{C h I}-1 \\ & \left(\mu g t^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Phaөo } \\ & \left(\mu \mathrm{g} \mathrm{~L}^{-1}\right) \end{aligned}$	$\begin{gathered} \mathrm{POC} \\ \left(\mathrm{~m}_{\mathrm{g}} \mathrm{E}^{-1}\right) \end{gathered}$	$\left.\begin{array}{\|c\|} \hline \text { PON } \\ \text { mgl. } \end{array} \right\rvert\,$	$\begin{gathered} \text { PF } \\ (\mu \mathrm{M}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{NO}_{3} \\ & (\mu \mathrm{M}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NO}_{2} \\ & (\mu \mathrm{M}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NH}_{4} \\ & (\mu \mathrm{M}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{PO}_{4} \\ & (\mu \mathrm{M}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{SiO}_{2} \\ & (\mu \mathrm{M}) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { PAR } \\ k\left(m^{-1}\right) \end{array}$	Sechi Depth (m	Diatoms (cells ml^{-1})	Dinoflag (cells mil ${ }^{-1}$)
Dix Isiand	$69^{\circ} 47.32$	$43^{\circ} 46.51$	Center	12	26.41		1.20	0.68	0.299	0.035	0.92	3.77	0.34	2.84	0.88	10.28				
			Cenler	9	26.11		1.20	0.97				3.73	0.34	2.94	0.90	10.30				
			Center	3.5	23.94		1.13	0.95				3.74	0.32	3.95	0.90	11.80				
			Center	1	22.92		0.92	0.98	0.24	0.028	0.90	3.69	0.31	3.74	0.90	12.31	0.835			
$\overline{\text { Phippsbuig }}$	48.29	49.45	Center	15	19.10	3.1	0.85	1.51	0.362	0.045	1.00	3.80	0.29	4.51	0.96	14.49		1.9		
			Center	11.5	19.15		0.85	1.33			0.98	3.86	0.29	4.37	0.94	14.48				
			Center	9	19.06	2.9	0.85	1.33			0.97	3.89	0.30	4.61	0.96	14.69	0.657			
			Center	t	17.57	2.9	0.85	1.42	0.334	0.03B	1.14	3.93	0.29	4.53	0.95	15.58	0.770			
Blufl Head	47.68	52.15	Center	23	13.46	5.1	1.13	1.95	0.513	0.056	1.58	3.85	0.26	5.06	0.87	17.82		1.2		
			Center	11	13.31		1.13	1.95			1.55	3.82	0.25	4.59	0.86	17.94				
			Center	1	12.55	3.9	1.20	1.97	0.487	0.054	1.55	3.73	0.24	4.48	0.85	17.96	0.937			
Fish Piant	48.5	55.52	Center	16.5	700	9.8	2.48	5.23	1.039	0.116	2.94	3.16	0.19	4.41	0.64	20.55		1.2		
			Center	11	6.92	8.8	2.48	5.23			3.14	3.16	0.19	4.48	0.69	20.71				
			Center	6	6.77		2.62	4.45			3.08	3.17	0.17	3.97	0.61	19.98	0.996			
			Center	1	0.71	7.5	2.12	3.77			2.79	3.17	0.17	4.19	0.60	20.27	1.450			
Merrymeeting Bay	49.86	59.09	East side	7	1.09	12.4	7.65	5.22				2.29	0.15	0.94	0.36	24.34		1.0		
			East side	1	1.00	9.4	8.15	5.00				2.31	0.16	1.81	0.36	24.61	1.657		144,8	0.0
			Center	9	1.92	11.4	8.15	5.91	1.423	0.109	5.02	1.36	0.14	1.36	0.25	20.20				
			Center	6	1.84	12.2	8.15	5.91			5.10	1.24	0.13	0.87	0.24	20.28				
			Center	${ }^{\dagger}$	1.72	11.5	8. 50	6.01	1.517	0.201	5.37	1.71	0.15	1.98	0.30	21.93	2.088			
			West side	1	1.74		8.15	4.55				1.99	0.16	1.79	0.28	20.38			123.2	0.0
Twing Point	48.96	61.18	Easiside	1	0.36		8.50	6.04				3.16	0.32	0.11	0.35	31.53	1.874	0.9		
			Center	8	0.26	14.1	6.50	5.55	1,478	0.210	5.09	3.77	0.17	0.60	0.57	32.67				
			Center	5	0.26	14.3	8.50	5.10			5.72	3.82	0.15	0.37	0.56	32.86	1.183			
			Center	1	0.25	12.4	8.50	4.19	1.33 B	0.191	4.70	3.82	0.20	0.13	0.43	33.32	1.900		261.0	0.0
			West side	1	0.24		9.21	5.30				3.59	0.18	0.61	0.56	32.99			264.0	0.0
Green Point	47.36	63.29	Cenler	3	0.07	6.5	5.67	2.04	0.718	0.089	2.51	5.83	0.18	0.81	1.01	49.03		1.4		
			Center	1	0.07	6.3	6.73	0.07	0.706	0.081	2.76	5.84	0.19	1.12	1.08	48.48	1.456		208.8	0.0
			East stde	1	0.07		5.67	2.04				5.86	0.21	0.08	0.90	48.71			190.0	0.0

Table A.7(K-D) Kernebec Data Summary - 16-17 Sept'S5 Flooding Tide

Table B
Particle Analysis
Table B. 1 (D) 24 September, 1993, Damariscotta Estuary
(S) 25 September, 1993, Sheepscot Estuary
(K) 26 September, 1993, Kennebec Estuary

Table B. $2 \quad$ 8-9 February, 1994
Damariscotta, Sheepscot, and Kennebec Estuaries
Table B. 3 (D) 5 May, 1994
Damariscotta Estuary
Table B. 5 (D) 5 July, 1994
Damariscotta Estuary

Table B Methods

Water samples were subsampled from Niskin bottle grab samples in 0.75 t glass jars and 2\% Lugol's fixative was added. Samples were run on a Coulter Multisizer for particle concentration, size distribution and volume. Duplicate samples were run for each station. Due to setting atter Niskin grab samples prior to subsampling, samples taken on 9/93 had high variability among replicates. All samples were 1 m below the surface except where noted. Apertures used and volumes counted along with size limits, are given below. The final sample protocol for analysis was on 7/5/94 samples, where 36.8 ml were counted on the 280 micron aperture, 4.4 ml were counted on the 140 micron aperture, and the numbers of channels were 128 and 64, respectively (about 2 microns ESD per channel). This gave the greatest reproducibility among samples. Subsamples had to be taken immediately after sampling with the Niskin bottle to be representative of the grab sample.

Date	Aperture $(\mu \mathrm{m})$	Vol counted (ml)	Size range $(\mu \mathrm{m})$
$9 / 93$	280	18.4	$5.6-112$
	100	2.3	$2.1-64$
$2 / 94$	100	2.3	$2.1-64$
$5 / 94$	280	9.2	$5.6-112$
	140	2.2	$2.8-64$
$7 / 94$	280	36.8	$15-50$
	140	4.4	$2.8-15$

On 7/94 particle concentration above $50 \mu \mathrm{~m}$ was not studied as the concentration was less than 30 particles per channel. In order to obtain concentrations of particles above $50 \mu \mathrm{~m}$, optical techniques are necessary. It is likely that most of the particle volume is in these larger size classes in situ. All samples were prefiltered with $243 \mu \mathrm{~m}$ zooplankton net, and there was no significant difference in concentrations of particles filtered vs. unfiltered.

Table B. 1 (D)
Particle Analysis, Damariscotta 24 Sept '93

station-bottle	depth (m)	$\begin{gathered} \text { A } \\ \text { particle vol } \\ \left(\mathrm{mm}^{3} / \mathrm{ml}\right) \end{gathered}$	B	particle conc. (龍 $/ \mathrm{ml}$)	B
1-1	25	2.18	3.87	6360	6591
1-2	15	2.07	2.12	4270	5678
1-3	10	2.45	2.08	3258	5728
1-4	5	2.26	1.88	4444	6132
1-5	1	3.32	2.27	11559	5314
2-1	12	2.93	5.13	7550	6105
2-2	8	2.50	3.36	6923	9530
2-3	4	2.72	2.51	7096	4171
2-4	1	2.92	2.52	5730	8573
3-1	20	2.97	3.24	6029	8300
3-2	15	4.77	2.55	11053	11531
3-3	10	2.41	4.49	6698	10573
3-4	5	3.44	2.50	7890	5080
3-5	1	4.44	4.64	7899	9153
4-1	12	3.38	3.02	10662	8133
4-2	8	2.27	3.87	9525	7406
4-3	4	7.00	2.37	6164	8499
$4-4$	1	3.92	0.47	14876	4208
5-1	12	1.69	1.55	4488	6363
5-2	8	3.37	2.90	8262	2835
5-3	4	2.26	2.24	3006	2284
5-4	1	2.59	2.22	8583	8180
7-1	12	3.05	5.10	25985	49174
8-1	4	3.63	2.61	33971	58557
8-2	1	3.71	3.94	47059	45608
9-1	1		3.69		18613

Table B. 1 (S)
Particle Analysis, Sheepscot 25 Sept '93

station-bottle	depth (m)	particle voil ($\mathrm{mm}^{3} / \mathrm{ml}$)	particle conc ($\#$ (ml)
1-1	32	2.36	7692
1-2	20	1.44	10669
1-3	16	2.87	13683
1-4	11	3.74	10860
1.5	5	2.24	18584
1-6	1	1.28	14708
2-1	22	2.05	9137
2-2	15	3.47	1554
2-3	10	3.11	24588
2.5	1	1.54	26054
3-1	16	3.88	17573
3-2	12	2.30	15906
3-3	8	2.13	12991
3-5	1	1.90	16360
4-1	22	2.84	18430
4-2	14	1.88	14336
4-3	10	3.48	16364
4-4	5	4.19	18462
4-5	1	2.24	21095
5-1	17	2.39	16853
5-2	12	2.44	18333
5-3	8	3.32	20303
5-4	4	2.66	16358
5-5	1	2.98	19359
6-1	18	3.05	19400
6-2	12	2.21	9716
6-3	8	2.87	24202
6-4	4	4.40	22489
6-5	1	2.94	15054
7-1	18	2.39	21756
7-2	12	2.15	15963
7-3	8	2.66	19197
7-4	4	1.88	14153
7.5	1	3.67	20045
8-1	15	2.88	18033
$8-2$	10	2.85	18227
8-3	4	2.57	17750
8-4	1	2.95	17297
$9 \cdot 1$	21	1.14	11933
9-2	15	2.00	14744
9.3	10	1.68	16713
9.5	1	3.41	17283
10-1	1	1.07	7097

Table B .1 (K)
Particle Analysis, Kernebec 27 Sept '93

station-botile	depth (m)	particle vol $\left(\mathrm{mm}^{3} / \mathrm{mm}\right)$	$\begin{gathered} \text { particle conc. } \\ \text { (\#\#iml) } \end{gathered}$
1-1	15	1.48	5947
1-2	12	2.69	7440
1-3	8	1.26	8563
1-4	4	1.18	10339
1-5	1	2.08	16959
2-2	8	3.06	10997
$2 \cdot 3$	4	2.05	15632
2-4	1	2.06	19445
3-1	8	3.53	24698
3-2	4	1.89	27393
3-3	1	3.77	28000
4-1	13	2.98	32042
4-2	9	2.85	36948
4-3	5	3.25	37808
4-4	1	3.75	44591
5-1	9	22.90	873388
5-2	5	3.34	57910
5-3	1	3.92	72956
6-1	12	49.54	1687376
6-2	6	7.86	84344
6-3	1	7.90	77365
7 7-1	17	9.09	103688
7-2	1	10.48	92097

Table B. 2
Particle Analysis 8-9 Feb '94

Damarisco	Sheepscot				
station	depth (m)	particle conc. (新 ml)	station	depth (m)	particle conc. (\#)
1-1	8	- 53726	1-1	40	30600
1-2	4.5	26119	1.2	25	38255
1-3	1	24547	1-3	12	38504
2-1	13	19309	$1-4$	1	22975
2-2	7	18805	2-1	19	35648
2-3	1	32928	2-2	6	19982
3-1	25	44163	2-3	1	17067
3-2	15	49665	3-1	21	69783
3-3	1	56578	3-2	12	47462
4-1	28	21491	3-3	1	42116
4-2	13	19121	4-1	18	44479
4-3	1	14266	4-2	8	49986
			4-3	1	32847
Kennebec			5-1	18	23004
station	depth	particle conc.	5-2	8	52545
	(m)	(${ }_{\text {H }}(\mathrm{ml}$)	5-3	1	35979
1-1	16	17859	6-1	13	26492
1-2	6	11778	6-2	5	22210
1-3	1	38710	6-3	1	25281
2-1	18	34177	7-1	6	33744
2-2	8	27047	7-2	1	35268
2-3	1	29582			
3-1	1	31407			

Table B. 3 (D)
Particle Analysis, Damariscotta 5 May '94
Depth of samples- 1 m below surface

station	$\begin{gathered} A \\ \text { particle vol } \\ \left(\mathrm{mm}^{3} / \mathrm{ml}\right) \end{gathered}$	8		B
1-4	2.88	1.50	16461	16846
2-5	3.43	1.60	44609	15062
3-5	2.22	1.89	11013	12149
4-4	2.24	1.75	25429	19154
5-3	2.93	2.39	16626	21035
6-3	5.04	2.73	27214	21573
7-3	5.16	3.17	28960	33303
8-2	5.56	4.62	30334	29419
9-2	4.47	4.13	25941	27299

Table B. 5 (D)
Particle Analysis, Damariscotta 5 July '94
Depth of samples- 1 m below surface

station	A particle vol $\left(\mathrm{mm}^{3} / \mathrm{ml}\right)$	\mathbf{B}	\mathbf{A} particle conc. $($ (\#mi) $)$	\mathbf{B}
$1-4$	3.03	3.25	11932	15459
$2-4$	2.69	2.92	9625	6204
$3-4$	3.54	3.39	11885	16144
$4-3$	3.39	3.62	12707	13045
$5-4$	3.82	3.69	17073	18767
$6-3$	3.88	3.66	14096	16009
$7-3$	5.17	4.81	12384	13027
$8-2$	6.09	5.51	31713	29766
$9-2$	5.53	5.48	59788	59224

Table C (D) February 14-April 5, 1994, Damariscotta Estuary Stations
D1- Rutherford Island, $43^{\circ} 51.4 \mathrm{~N}, 69^{\circ} 33.8 \mathrm{~W}$
D2- Darling Center Pier, $43^{\circ} 55.1 \mathrm{~N}, 69^{\circ} 34.8 \mathrm{~W}$
D3- not accessible due to ice cover
D4- Newcastle Bridge, $44^{\circ} 02.0 \mathrm{~N}, 69^{\circ} 32.0 \mathrm{~W}$
(S) February 14-April 5, 1994, Sheepscot Estuary Stations

S1-Hendricks Head, $43^{\circ} 49.4 \mathrm{~N}, 69^{\circ} 41.5 \mathrm{~W}$
S2- Barter's is., $43^{\circ} 53.6$ N, $69^{\circ} 41.0 \mathrm{~W}$
S3- Ft. Edgecomb, $43^{\circ} 59.5 \mathrm{~N}, 69^{\circ} 39.3 \mathrm{~W}$
S4-Wiscasset Town Dock, $43^{\circ} 59.9$ N, $69^{\circ} 39.9$ W (collected 2 h later than S 3)
(K) February 14-April 5, 1994, Kennebec Estuary Stations

K1- Bay Point, $43^{\circ} 45.3$ N, $69^{\circ} 46.5 \mathrm{~W}$
K2- Marrtown, $43^{\circ} 48.5 \mathrm{~N}, 69^{\circ} 47.0 \mathrm{~W}$
K3-Bluff Head, $43^{\circ} 51.3 \mathrm{~N}, 69^{\circ} 47.5 \mathrm{~W}$
TABLE C LEGEND AND METHODS
Abbreviations and analytical methods are identical to those used in Table A.
Samples were collected every 3-4 days from shore at the same time each day, regardless of tidal phase. Sampling was restricted to the top $1-1.5 \mathrm{~m}$ of water using a specially rigged bottle which was thrown out from the shore ($5-10 \mathrm{~m}$) on a lanyard.

Table C (D)
Damariscotta Spring Bloom Sampling 14 Feb-5 Apr '94

station	date	$\begin{gathered} \text { time } \\ \text { (ESD) } \end{gathered}$	$\begin{array}{c\|} \hline \text { salinity } \\ \text { (psu) } \end{array}$	$\begin{aligned} & \mathrm{NH} 4 \\ & (\mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & (\mathrm{pM}) \end{aligned}$	$\begin{aligned} & \mathrm{NO} 2 \\ & (\mathrm{NM}) \end{aligned}$	$\begin{aligned} & \mathrm{PO4} \\ & (\mu \mathrm{M}) \end{aligned}$	SiO 2 ($\mu \mathrm{M}$)	$\begin{aligned} & \text { Chl a } \\ & \mu \mathrm{g} / \mathrm{L} \end{aligned}$	$\left[\begin{array}{c} O D \\ (284 \mathrm{~nm}) \end{array}\right.$
D1	14-Feb	1000	28.0	0.48	8.66	0.13	0.76	11.01	1.185	0.130
D1	18-Feb	0925	31.2	0.46	8.56	0.20	0.78	12.99	1.185	0.128
D1	22-Feb	0805	31.6	0.39	7.32	0.16	0.60	9.99	1.595	0.157
D1	25-Feb	0920	27.0	0.57	7.48	0.16	0.68	9.99	1.989	0.177
D1	28-Feb	0905	30.4	0.54	6.89	0.17	0.60	8.22	2.540	1.378
D1	4-Mar	0840	31.7	0.67	8.46	0.17	0.67	7.70	2.200	0.154
01	8-Mar	0840	31.4	0.55	7.34	0.19	0.50	6.34	2.286	0.144
D1	11-Mar	0920	30.3	0.69	4.87	0.14	0.53	4.31	3.471	0.252
D1	14-Mar	0910	31.2	0.90	3.63	0.15	0.43	2.46	3.725	0.212
D1	18-Mar	0834	31.3	0.57	2.11	0.13	0.36	1.85	4.402	0.112
D1	22-Mar	0845							4.063	0.155
D1	26-Mar	0845							6.095	0.185
D1	31-Mar	0825							4.148	0.206
D1	5-Apr	0720							2.878	0.226
D2	14-Feb	0915	29.9	0.61	7.48	0.16	0.67	11.81	2.624	0.201
D2	$18-\mathrm{Feb}$	0850	30.1	0.53	7.00	0.17	0.60	11.22	3.047	0.277
D2	22-Feb	0840	30.8	0.39	5.46	0.20	0.45	9.42	6.143	0.180
D2	25-Feb	0850	29.7	0.44	5.91	0.18	0.53	9.46	4.063	0.160
D2	28-Feb	0845	30.5	0.89	3.43	0.18	0.38	6.23	4.487	0.139
D2	4-Mar	0910	28.9	0.56	2.47	0.16	0.35	3.62	5.927	0.211
D2	8-Mar	0900	30.9	0.49	2.73	0.14	0.34	2.77	6.688	0.205
D2	11-Mar	0825	31.7	0.44	2.45	0.13	0.37	2.16	7.619	0.194
D2	14-Mar 18-Mar	0840	30.1 30.3	0.64	0.58	0.17	0.18	1.11	9.142	0.202
D2	18-Mar 22-Mar	0855	30.3	0.48	0.21	0.07	0.20	0.94	8.635	0.202
D2	22-Mar	0825							3.809	0.201
D2	31-Mar	0900							5.418	0.276
D2	5-Apr	0750							3.386	0.281
D4	14-Feb	1100	21.2	1.49	4.64	0.16	0.34	19.89	2.047	0.251
D4	18-Feb	1005	26.0	1.31	3.74	0.22	0.26	18.89 18.94	2.709 3.386	0.401 0.652
D4	22-Feb	0940	25.1	0.90	3.13	0.18	0.36	10.61	6.025	0.232
D4	25-Feb	0955	18.8	0.78	1.94	0.17	0.22	9.85	6.518	0.276
D4	28-Feb	0935	20.6	1.00	0.88	0.13	0.16	13.53	5.164	0.276 0.217
D4	4-Mar	0930	23.2	0.84	1.04	0.12	0.14	8.18	7.026	0.217
D4	8-Mar	0935	25.3	2.20	1.04	0.11	0.24	4.57	8.719	0.344 0.331
D4	11-Mar	0942	26.0	0.72	0.21	0.09	0.13	4.21	12.275	0.366
D4	14-Mar	0940	21.5	2.51	0.73	0.37	0.10	11.50	9.142	0.361
D4 D4	18-Mar 22-Mar	0930 0915	12.0	0.42	0.35	0.19	0.05	4.11	6.603	0.365
D4	22-Mar	0915 0925							3.979	0.245
D4	31-Mar	0920							4.571	0.354
D4	5-Apr	0810							3.470	0.485

Table C (S)
Sheepscot Spring Bloom Sampling 14 Feb-5 Apr '94

station	date	$\begin{gathered} \text { time } \\ \text { (EST) } \end{gathered}$	salinity (psu)	NH 4 ($\mathrm{\mu M}$)	$\begin{aligned} & \mathrm{NO} \mathbf{O} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{NOZ} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \text { PO4 } \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{SiO} 2 \\ & (\mu \mathrm{M}) \end{aligned}$	Chl a $\mu g / L$	$\begin{gathered} \hline O D \\ (284 \mathrm{~nm}) \\ \hline \end{gathered}$
S1	14-Feb	1210	30.7	0.47	9.30	0.14	0.81	13.34	0.525	0.183
51	18-Feb	0900	31.4	0.55	12.52	0.18	0.90	15.99	0.804	0.182
S1	22-Feb	0835	31.0	0.39	10.45	0.16	0.80	15.23	0.732	0.182
S1	25-Feb	1045	31.7	0.60	12.11	0.16	0.89	14.44	0.804	0.324
S1	28-Feb	0800	31.0	0.81	11.74	0.20	0.87	14.91	1.354	0.395
S1	4-Mar	0840	32.0	0.58	13.67	0.16	0.88	13.56	0.847	0.198
S1	8-Mar	0900	31.7	1.23	44.23	0.16	0.95	12.86	0.652	0.200
S1	11-Mar	0830	31.7	0.44	12.25	0.15	0.84	13.52	0.677	0.254
\$1	14-Mar	1020	29.3	0.87	11.86	0.15	0.82	13.46	0.652	0.219
S1	18-Mar	0900							1.524	0.187
S1	22-Mar	0855							2.286	0.276
S1	26-Mar	1145							3.979	0.251
S1	31-Mar	0810							7.020	0.280
S1	5-Apr	0745							3.047	0.339
S2	14-Feb	1300	30.8	0.26	12.09	0.18	0.86	18.13	0.593	0.233
S2	18-Feb	1000	31.2	0.40	11.84	0.15	0.92	16.62	0.889	0.204
S2	22-Feb	0905	29.8	0.60	11.39	0.16	0.82	17.22	0.449	0.188
S2	25-Feb	1115	30.5	0.60	10.64	0.17	0.86	18.17	0.643	0.294
S2	28-Feb	0830	30.9	0.86	12.20	0.17	0.86	16.91	0.931	0.203
S2	4-Mar	0910	32.0	0.62	11.79	0.15	0.85	14.28	0.804	
S2	8-Mar	0920	31.2	0.84	12.27	0.15	0.83	14.35	0.720	0.172
S2	11-Mar	0920	31.1	0.78	13.39	0.15	0.82	15.13	1.016	0.263
S2	14-Mar	0950	30.1	0.87	12.23	0.15	0.79	17.12	0.762	0.356
S2	18-Mar	0925							2.878	0.172
S2	22-Mar	0925							1.862	0.270
S2	26-Mar	1115							2.540	0.395
S2	31-Mar	0835							8.465	0.313
S2	5-Apr	0715							2.963	0.349
S3	14-Feb	1335	29.7	0.48	12.34	0.15	0.86	21.38	0.635	0.262
S3	18-Feb	1040	27.3	0.72	13.03	0.15	0.88	21.95	0.466	0.387
S3A	18-Feb	1350	29.2	1.41	9.86	0.24	0.82	29.98	0.508	
S3	22-Feb	0940	29.7	0.78	12.28	0.15	0.84	19.81	0.969	0,270
S3	25-Feb	1455	30.1	0.74	11.21	0.17	0.83	20.09	0.720	0.303
S3	28-Feb	0900	28.8	1.03	11.94	0.18	0.80	22.93	0.847	0.275
S3	4-Mar	1000	29.9	0.98	12.30	0.16	0.78	20.66	0.931	0.284
S3	8-Mar	1000	27.9	1.03	7.86	0.17	0.76	16.94	0.847	0.279
S3	11-Mar	0950	29.2	1.11	12.52	0.16	0.78	20.03	0.889	0.351
53	14-Mar	0915	26.9	1.67	9.25	0.17	0.71	28.08	0.762	0.521
53	18-Mar	1015							1.693	0.378
S3	22-Mar	1000							2.370	0.690
S3	26-Mar	0940							2.878	0.296
S3	31-Mar	0905							3.809	0.676
S3	5-Apr	0825							3.217	0.459
S4	22-Feb	1245	26.9	1.77	9.23	0.18	0.77	30.07	0.886	0.351
S4	25-Feb	1430	28.0	1.47	9.76	0.17	0.82	26.11	0.762	
54	28-Feb	1220	29.2	0.99	11.82	0.76	0.81	20.66	0.677	0.245
S4	4-Mar	1310	29.5	1.09	13.68	0.16	0.79	20.97	0.677	0.278
S4	8-Mar	1210	28.2	1.64	12.06	0.16	0.74	23.63	0.804	0.278

Table C (S)
Sheepscot Spring Bloom Sampling 14 Feb-5 Apr '94

station	date	$\begin{gathered} \text { time } \\ \text { (EST) } \end{gathered}$	salinity (psu)	$\begin{aligned} & \mathrm{NH} 4 \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{NOZ} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{PO} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{SiO} 2 \\ & (\mu \mathrm{M}) \end{aligned}$	Chla $\mu \mathrm{g} / \mathrm{L}$	$\begin{gathered} \hline 0 D \\ (284 \mathrm{~nm}) \end{gathered}$
54	11-Mar	1230	27.0	1.17	11.44	0.13	0.70	26.18	0.762	0.377
54	14-Mar	1200	28.7	1.20	12.16	0.16	0.75	19.96	1.016	0.228
54	18-Mar	1145							1.058	0.335
54	22-Mar	1210							2.540	0.503
54	26-Mar	1200							1.989	0.458
54	31-Mar	1135							4.063	0.445
S4	5-Apr	1040							2.709	0.642

Table C (K)
Kennebec Spring Bloom Sampling 14 Fet-5 Apr '94

station	date	$\begin{array}{\|c\|l\|} \hline \text { time } \\ \text { (EST) } \end{array}$	salinity (psu)	$\begin{aligned} & \mathrm{NH4} \\ & (\mathrm{\mu M}) \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{aligned} & \mathrm{NO} \\ & (\mu \mathrm{M}) \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{PO} 4 \\ (\mu \mathrm{M}) \end{array}$	$\begin{aligned} & \mathrm{SiO} 2 \\ & (\mu \mathrm{M}) \end{aligned}$	Chl a $\mu \mathrm{g} / \mathrm{L}$	$\begin{array}{\|c\|} \hline \text { OD } \\ (284 \mathrm{~nm}) \\ \hline \end{array}$
K1	14-Feb	1545	24.7	1.62	13.16	0.18	0.87	32.03	0.423	0.432
K1	18-Feb	1140	20.5	2.63	11.92	0.20	0.87	39.29	0.677	0.544
K1	22-Feb	1100	23.8	1.96	9.52	0.28	0.80	25.91	1.181	0.382
K1	25-Feb	1300	23.2	2.43	10.20	0.22	0.85	33.86	0.677	0.324
K1	28-Feb	1040	31.2	0.54	12.48	0.17	0.89	14.69	1.270	0.425
K1	4-Mar	1100	24.0	2.22	11.72	0.18	0.79	30.89	0.889	0.401
K1	8-Mar	1030	26.1	2.50	11.06	0.19	0.81	27.37	0.804	0.433
K1	11-Mar	1040	29.9	0.50	11.88	0.16	0.86	11.69	0.720	0.149
K1	14-Mar	1030	30.5	0.68	11.14	0.16	0.78	13.40	1.693	0.178
K1	18-Mar	1025	19.3	2.96	10.42	0.20	0.70	40.58	1.820	0.531
K1	22-Mar	1015							1.693	0.506
K1	26-Mar	1020							11.428	0.131
K1	31-Mar	1020							3.809	0.782
K1	5-Apr	0910							2.455	0.588
K2	14-Feb	1520	16.8	1.88	9.50	0.30	0.80	30.88	1.185	0.568
K2	18-Feb	1200	12.8	4.20	12.14	0.24	0.80	56.78	0.423	0.880
K2	22-Feb	1120	19.9	3.08	11.42	0.23	0.82	40.67	1.122	0.550
K2	25-Feb	1320	18.8	3.28	11.62	0.27	0.80	43.84	0.804	0.456
K2	28-Feb	1100	21.9	2.91	11.49	0.27	0.81	39.26	0.847	0.625
K2	4-Mar	1125	15.6	4.20	12.76	0.22	0.80	52.62	0.720	0.824
K2	8-Mar	1050	25.2	2.56	11.37	0.20	0.80	32.58	0.847	0.416
K2	11-Mar	1055	24.3	1.64	9.72	0.17	0.79	32.48	2.032	0.509
K2	14-Mar	1050	23.5	1.95	9.45	0.16	0.78	27.33	1.312	0.374
K2	18-Mar	1100	10.7	3.44	11.59	0.19	0.77	60.76	0.508	0.827
$K 2$	22-Mar	1030							2.709	0.708
K2	26-Mar	1040							7.619	0.472
K2	31-Mar	1040							2.032	1.077
K2	5-Apr	0930							2.878	0.872
K3	14-Feb	1435	16.8	3.44	12.29	0.18	0.79	50.18	0.466	0.746
K3	18-Feb	1235	6.1	5.19	13.30	0.28	0.69	70.44	0.423	1.019
K3	22-Feb	1030	17.0	3.62	11.12	0.24	0.83	46.09	0.886	0.705
K3	25-Feb	1350	15.3	3.97	12.43	0.39	0.82	51.60	0.677	0.607
K3	28-Feb	1140	13.6	4.32	11.96	0.26	0.77	55.76	0.762	0.743
K3	4-Mar	1215	5.3	6.12	14.45	0.25	0.73	67.08	0.635	0.976
K3	8-Mar	1210	19.4	3.95	11.88	0.38	0.78	37.21	0.677	0.653
K3	11-Mar	1130	16.1	3.75	11.61	0.19	0.83	53.03	0.720	0.693
K3	14-Mar	1120	12.9	3.61	9.82	0.25	0.61	47.30	0.804	0.837
K3	18-Mar	1120	3.9	4.92	13.35	0.21	0.72	68.29	0.593	1.023
K3	22-Mar	1140							1.608	0.881
K3	26-Mar	1110							4.065	0.976
K3	31-Mar	1105							1.608	1.103
K3	5-Apr	1000							2.878	0.909

Table D (K) 10 March-7 July, 1994, Kennebec River Estuary

Iable.D_Legend and Methods

Abbreviations and analytical methods are identical to those used in Table A.
Samples were collected as frequently as possible from Thorne Point ($43^{\circ} 57 \mathrm{~W}$, $69^{\circ} 39 \mathrm{~N}$) on the Kennebec River Estuary. Outlow data was obtained from the U.S.G.S. Station gauging station at Auburn, Maine.

Table D (K)
Kennebec River Sampling 10 Mar-7 July '94

date	outflow cfps	$\begin{gathered} \mathrm{NH} 4 \\ \mathrm{\mu M} \end{gathered}$	$\begin{aligned} & \hline \mathrm{NO} \\ & \mathrm{\mu M} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{NO} 3+\mathrm{NO} 2 \\ \mu \mathrm{M} \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ \mathrm{\mu M} \end{gathered}$	$\begin{gathered} \mathrm{SiO} \\ \mathrm{MM} \end{gathered}$
10-Mar	14370					
11-Mar	14300					
12-Mar	13880					
13-Mar	12710					
14-Mar	15060	6.65		12.81	0.53	32.80
15-Mar	14960	5.33	0.183	14.46	0.81	48.60
16-Mar		8.49		13.67	0.79	61.00
17-Mar	14960	10.86		13.14	0.58	31.80
18-Mar	14280	6.96		12.76	0.56	74.30
19-Mar	13020	10.21		13.53	0.99	57.20
20-Mar	12990	10.07		13.86	0.70	65.10
21-Mar	13920	10.79		13.54	0.85	57.20
22-Mar	14160	17.64		11.24	0.90	27.80
23-Mar	15980	15.12		13.47	0.72	50.80
24-Mar	15280	7.59		13.40	0.66	51.20
25-Mar	18090	9.99		13.02	0.68	46.20
26-Mar	18980					
27-Mar	19780	10.12		12.72	0.82	51.10
27-Mar	19080	6.85		12.00	0.53	38.80
28-Mar	19340	8.28		12.60	0.53	41.60
29-Mar	18040	12.24		13.05	0.85	52.40
30-Mar	18430	10.27	0.133	14.88	1.20	42.90
31-Mar		33.37	0.342	15.79	1.74	23.60
1-Apr	19720	4.95	0.119	13.69	0.51	14.50
2-Apr	18970	6.51	0.112	13.21	1.03	19.80
3-Apr	19720	6.49	0.098	12.67	0.79	33.00
4-Apr	24960	7.79	0.084	13.38	1.06	28.50
5-Apr	29400	6.60	0.098	12.06	0.69	27.60
6-Apr	35300	25.23	0.164	12.87	0.91	41.70
7-Apr	41900	39.00	0.269	13.15	0.72	17.50
8-Apr	50400	76.59	0.883	14.96	0.69	57.40
9-Apr	45700	27.47	0.199	14.10	1.09	27.50
10-Apr	42400	64.48	0.408	13.42	3.20	12.20
11-Apr	42500	1.97	0.065	10.27	0.01	27.40
12-Apr	46600	41.21	0.000	8.62	1.17	41.40
13-Apr	49800	4.78	0.120	11.39	0.41	49.60
14-Apr	60400	21.41	0.270	12.16	1.15	17.50
15-Apr	73000	44.94	0.905	12.98	0.83	49.00
16-Арг	81700	6.21	0.182	10.57	0.81	8.57
17-Арг	95300	6.71	0.116	8.95	0.63	17.00
18-Apr	80400	30.26	0.317	11.26	1.18	6.54
19-Apr	66800	53.67	0.600	9.68	0.01	3.92
20-Apr	57800	5.57	0.112	8.37	0.83	5.62
21-Apr	48700	10.56	0.149	9.06	0.44	8.34
22-Apr	42200	6.94	0.110	9.76	0.57	8.28
23-Apr	34600	26.75	0.322	9.92	0.37	11.20

Table D (K)
Kennebec River Sampling 10 Mar-7 July '94

dato	outflow cips	$\begin{gathered} \hline \mathrm{NH} 4 \\ \mathrm{\mu M} \end{gathered}$	$\begin{gathered} \mathrm{NO} 2 \\ \mathrm{\mu M} \end{gathered}$	$\mathrm{NO} 3+\mathrm{NO} 2$ μ^{M}	$\begin{gathered} \mathrm{PO4} \\ \mu \mathrm{M} \end{gathered}$	SiO 2 $\mu \mathrm{M}$
24-Apr	29400	6.24	0.231	9.35	1.20	8.91
25-Apr	29700	23.53	0.282	9.25	0.38	11.20
26-Apr	31800	12.59	0.676	11.80	0.34	7.93
27-Apr	36800					
28-Apr	48100	11.17	0.116	9.64	0.64	9.14
29-Apr	53300	16.14	2.338	18.37	0.37	46.60
30-Apr	45100	9.43	0.546	12.67	0.64	41.10
1-May	39000	27.89	0.405	11.89	0.33	19.90
2-May	44800	24.39	2.904	16.43	0.69	20.20
3-May	41700	25.25	0.349	9.69	0.30	37.80
4-May	35900	26.21	0.394	12.05	0.84	19.40
5-May	32900	10.13	0.121	8.77	0.19	11.30
6-May	33300	29.70	0.332	11.88	0.28	43.20
7-May	32900	11.56	0.693	7.12	0.14	28.20
8-May	33000	16.08	3.987	10.08	0.19	2.63
9-May	46000	8.47	0.830	2.76	0.30	6.07
10-May	44500	0.39	0.194	10.69	0.40	18.50
11-May	38500					
12-May	35200	8.04	0.178	9.71	0.95	19.10
13-May	37400	12.07	0.225	12.28	1.04	32.00
14-May	35800	42.62	1.026	5.32	0.61	114.00
15-May	30990	41.84	0.439	10.05	0.44	80.40
16-May	29100	4.23	0.105	10.14	0.47	24.40
17-May	29400	3.00	0.100	8.28	0.34	37.60
18-May	34700	20.24	0.545	10.53	0.82	52.70
19-May	30600	5.13	0.120	8.70	0.53	32.50
20-May	27200	4.25	0.090	9.13	0.57	50.01
21-May	24300	2.10	0.152	8.48	0.25	18.60
22-May	22740	8.42	0.164	9.39	1.53	10.20
23-May	21410	3.29	0.171	8.23	0.33	18.60
24-May	19270	21.73	0.444	8.58	1.01	23.60
25-May	17570	38.29	0.517	9.54	0.65	32.20
26-May	18180					
27-May	18100					
28-May	21220					
29-May	19270					
30-May	17570					
31-May	16180					
1-Jun	17580					
2-Jun						
3-Jun	16640					
4-Jun	15630					
5-Jun	13760					
6-Jun	12240					
7-Jun	11320					
8-Јuл	11440					

Table D (K)
Kennebec River Sampling 10 Mar-7 July '94

date	outflow cfps	NH 4 $\mu \mathrm{M}$	$\begin{gathered} \mathrm{NO} 2 \\ \mu \mathrm{M} \end{gathered}$	$\begin{gathered} \mathrm{NO}_{3}+\mathrm{NO} 2 \\ \mu \mathrm{M} \end{gathered}$	$\begin{aligned} & \mathrm{PO4} \\ & \mu \mathrm{M} \end{aligned}$	$\begin{gathered} \mathrm{SiO} 2 \\ \mu \mathrm{M} \end{gathered}$
9-Jun	14440					
10-Jun	13690					
11-Jun	13280					
12-Jun	11900					
13-Jun	11600					
14-Jun	13330					
15-Jun	14280					
16-Jun	11420					
17-Jun	11430					
18-Jun						
19-Jun	11550					
20-Jun	13940					
21-Jun						
22-Jun	9770					
23-Jun	9820					
24-Jun	10340					
25-Jun	10010					
26-Jun	9010					
27-Jun	9580					
28-Jun	9530					
29-Jun	12100					
30-Jun	11790		0.090	1.14		
1-Jul	11920	15.97	0.232	4.26	0.75	2.84
2-Jul	13290	12.05	0.289	5.61	1.17	5.31
3-Jإلا	12460	10.42	0.234	6.15	0.59	2.45
4-Jul	12170					
5-Jul	9720					
6-Jul	8650					
الال-7	9000					

Figure A Longitudinal Hydrography Survey

Each figure shows the vertical section contour plots of the parameter in the Damariscotta, Sheepscot and Kennebec estuaries.

Figure A.1.1 September 1993, temperature.
Figure A.1.2 September 1993, salinity.
Figure A.1.3 September 1993, density (sigma-t).
Figure A.1.4 September 1993, in situ chlorophyll fluorescence.
Figure A.2.1 February 1994, temperature.
Figure A.2.2 February 1994, salinity.
Figure A.2.3 February 1994, density (sigma-t).
Figure A.2.4 February 1994, in situ chlorophyll fluorescence.
Figure A.3.1 May 1994, temperature.
Figure A.3.2 May 1994, salinity.
Figure A.3.3 May 1994, density (sigma-t).
Figure A.3.4 May 1994, in situ chlorophyll fluorescence.
Figure A.4.1 June 1994, temperature.
Figure A.4.2 June 1994, salinity.
Figure A.4.3 June 1994, density (sigma-t).
Figure A.4.4 June 1994, in situ chlorophyll fluorescence.
Figure A.5.1 July 1994, temperature.
Figure A.5.2 July 1994, salinity.
Figure A.5.3 July 1994, density (sigma-t).
Figure A.5.4 July 1994, in situ chlorophyll fluorescence.
Figure A.6.1 August 1994, temperature.
Figure A.6.2 August 1994, salinity.
Figure A.6.3 August 1994, density (sigma-t).
Figure A.6.4 August 1994, in situ chlorophyll fluorescence.
Figure A. $7 \quad$ Tidal variations for Kennebec, September 1995.
Figure A.7.1 September 1995, temperature, Kennebec Estuary, high tide.
Figure A.7.2 September 1995, salinity, Kennebec Estuary, ebbing.
Figure A.7.3 September 1995, density (sigma-t), Kennebec Estuary, low tide.
Figure A.7.4 September 1995, in situ chlorophyll fluorescence, Kennebec Estuary, flooding.

Figure A Methods of Longitudinal Hydrography Survey
Continuous vertical profiles of temperature, salinity, light transmission, and in situ chlorophyll fluorescence were measured at all stations using a Neil Brown CTD, a Sea Tech $25-\mathrm{cm}$ path length transmissometer and in situ fiuorometer. Computation of salinity and density were based on the 1978 Practical Salinity Scale (UNESCO, 1981), and were performed using the software provided by General Oceanics/Neil Brown. The CTD data of June cruise were obtained by a Sea-Bird CTD and salinity and density were calculated using Seasoft version 3.3H. In September 1995 cruise, CTD data were acquired by SEB 25-03 Sealogger CTD and Seasoft version 4.213. In situ chlorophyll fluorescence was measured by WETStar minature fluorometer. Vertical section contour plots of the parameters measured or calculated were made using Surfer for Windows software (Golden Software, Inc.). The CTD, light transmission and in situ fluorescence data are available on disk as ASCII files. Due to instrumental failure, light transmission data were not processed and presented. The station locations are the same as those for the biogeochemical data and are listed in Table A.

All stations except September 1995 were started at the mouth of the estuary at high tide, with sampling progressing up estuary against the ebbing tide. In September 1995 stations were repeated four times during a single tidal cycle.

References:
UNESCO. 1981. Background papers and supporting data on the practical salinity scale 1978. UNESCO Technical Papers in Marine Science, No. 37. 144p.

Figure A.1.1. Vertical section contour plots of temperature (C), from the mouth to the head, in the Darreriscotta, Sheepscot and Kennebec River estuaries in September 1993. Latitude is given as minutes north of 43 degrees N. Sample depths are shown as crosses at each station.

Figure A 1.2. Vertical section contour plots of salinity (prsu), firm the mouth to the head, in the Darreriscotta, Sheepsoot and Kernebec River estuaries in Septermber 1993. Latitude is given as minutes north of 43 degrees N. Sarple depths are shown as croeses et each station.

Figure A 1.3. Vertical section contour plots of Sigma-t, from the mouth to the head, in the Damariscotte, Sheepscot and Kennebec River estuaries in Septermber 1993. Latitude is given as minutes north of 43 degrees N. Sample depths are shown as crosses at each station.

Figure A 1.4. Vertical section contour plots of in situ chlorophyl fluonescence (ug/L), from the morth to the head, in the Damariscotta, Sheepsoot and Kennebec River esturries in Septenter 1993. Latibide is given as ninutes north of 43 degrees N . Sample depths are shown as crosses at each station.

Figure A 2.1. Vertical section contour plots of termperature ("C), from the mouth to the head, in the Damariscotta, Sheepscot and Kennebec River estuaries in February 1994. Latitude is given as minutes north of 43 degrees N . Sample depths are shown as crosses at each station.

Figure A2.2. Vertical section contour plots of salinity (psu), from the mouth to the head, in the Damariscotta, Sheepscot and Kennebec River estuaries in Febrnary 1994. Latitude is given as minutes norti of 43 degrees N . Sarmple depths are shown as crossses at each station.

Figure A.2.3. Vertical section contour plots of Sigma-t. from the mouth to the head, in the Darrariscotta, Sheepscot and Kennebec River estuaries in February 1994 Lattude is given as minutes north of 43 degrees N. Sarmple depths are shown as coosses at each station.

Figure A.2.4. Vertical section contour plots of in situ chlorophyt furorescence (ug/L), from the mouth to the head, in the Darrariscotta, Sheepecot and Kemebec River esturies in Felruay 1994. Latitude is given as minttes north of 43 degrees N. Sample depths are shown at crosses at each station.

Figure A 3.1. Vertical section contour plots of temperature ("C), from the mouth to the head, in the Damanscotta, Sheepscot and Kennebec River estuanes in May 1994. Latitude is given as minutes north of 43 degrees N. Sample depths are shown as crosses at each station.

Figure A 3.2. Vertical section contour plots of salinity (psu), from the mouth to the head, in Damariscotia. Sheepscot and Kernebec River estuaries in May 1994. Latitude is given as minutes noth of 43 degrees N. Sample depits are shown as crosses at each station.

Figure A.3.3. Vertical section conlour plots of Sigma-t, from the mouth to the head, in Damriscotta, Sheepscot and Kennebec River estuaries in May 1994. Lathude is given as minutes north of 43 degrees N. Sample depths are shown as crosses at each station.

Figure A 3.4. Verticai section contour plots of in situ chlorophyl fionescence (ug/L). from the mouth to the head, in Danaristotia, Sheepscot and Kennebec River estraries in Nay 1994. Latitude is given as minutes north of 43 degrees N. Sarmple depths are shown as crosses at each station.

Figure A.4.1. Vertical section contour plots of temperature (C). from the mouth to the head, in the Damariscotta, Sheepscot and Kennebec River estuaries in June 1994. Latitude is given as minutes north of 43 degrees N. Sample depths are shown as crosses at each station.

Figure A.4.2. Verical section contour plots of sainity (psti), from the mouth to the head, in the Darteriscolta, Sheepscot and Kennebec River esturies in June 1994. Latiduce is given as minutes noth of 43 degrees N. Sample depths are shown ass crosses at each stetion.

Figure A.4.3. Vertical section contour plots of Sigme-t, from the mouth to the head, in the Dameriscotta, Sheepscot and Kennebec River estuaries in June 1994. Latitude is given as minutes north of 43 degrees N. Sample depths are shown as crosses at each station.

Figure A4.4. Verical section contour plots of in situ chiorophyil fluorescence (ug/L), from the mouth to the head, in the Dermaiscolta, Sheepscot and Kennebec River estuaries in dune 1994. Latitude is given as minutes noth of 43 degrees N. Sample depths are shown as crosses at each station.

Figure A5.1. Verical section contour plots of temperature (C), from the mouth to the head, in the Damariscotta, Sheepscot and Kennebec River estuaries in July 1994. Latitude is given as minutes north of 43 degrees N. Sample depths are shown as crosses at each station.

Figure A.5.2. Verical section contour plots of selintity ($\mathrm{PS}(\mathrm{S}$), from the mouth to the head, in the Damariscolta, Sheepscot and Kennebec River estuaries in July 1994. Latitude is given as minutes north of 43 degrees N. Sarmple depths are shown as crosses at each station.

Figure A5.3. Vertical section contour plots of signa-t, from the mouth to the head, in the Darrariscotta. Sheepscot and Kennebec River estuaries in July 1994. Latitude is given as minutes north of 43 degrees N. Sample depths are shown as crosses at each station.

Figure A5.4. Vertical section contour plots of in situ chlorophyll fluorescence (ug/L), from the mouth to the head, in the Damariscotta, Sheepscot and Kennebec River estuaries in uly 1994. Lotitude is given as minutes north of 43 degrees N. Sample depths are shown as cropses at each station.

Figure A6.1. Vertical section contour plots of termperature (C), from the rrouth to the head, in the Damariscotta, Sheepscot and Kennebec River estuaries in August 1994. Latitude is given as rrinutes north of 43 degrees N Sample depths are shown as crosses at each station

Figure A6.2. Vertical section contour plots of salinity (psu), from the mouth to the head, in the Darmaiscotta, Sheepsoot and Kannewec Fiver estuaries in August 1994. Latiude is given is minutas north of 43 degrees N. Sample deptiss are shown as crosses at each station.

Figure A.6.3. Vertical section contour plots of sigma-t, from the mouth to the head, in the Damanscotte, Sheepscot and Kennebec River estuaries in August 1994. Latitude is given as minutes north of 43 degrees N . Sample depths are shown as crosses at each station.

Figure A6.4. Verical section contour plots of in situ chlorophyil fiucrescence (ug/L), from the mouth to the head, in the Darrariscotta, Sheepscot and Kennebec River estuaries in August 1994. Latitude is given as minutes north of 43 degrees N . Sample depths are shown as crosses at each station.

Figure A.7. 1 Vertical section contour plots of Temperature (t), from the mouth to the head. in the Kennebec River estuary at 3 hour intervals on September 16-17, 1995. Latitude is in minutes north of 43 degrees N . Sample depths are shown as crosses at each station.

Figure A.7.2 Vertical section contour piots of Salintiy (PSU), from the mouth to the head, in the Kennebec River esturary at 3 hour intervals on September 16-17, 1995. Latitude is in minutes north of 43 degrees N . Sample depths are shown as croses at each station.

Figure A. 7.3 Vertical section contour plots of Sigma-t, from the morth to the head. in the Kennebec River estuary at 3 hour intervals on September 16-17, 1995. Latitude is in minutes north of 43 degrees N. Sample depths ate shown as crosses at each station.

Figure A.7.4 Vertical section contour plots of in situ chlorophyll fuorescence (ugh). from the mouth to the head, in the Kennebec River estuary at 3 hour intervals on September 16-17, 1995. Latitude is in minutes north of 43 degrees N . Sample depths are shown as crosses at each station.

Figure B Hydrography
Eigure B. 3 May 1994_Tidal Means
Figure B.3.1 Cross Section Locations: May 4-6, September 26-30, 1994
Figure B. 3.2
Figure B.3.3
Figure B. 3.4
Figure B.3.5
Figure B. 3.6
Figure B.3.7
Figure B. 3.8
(5/6/94) MK2 Bluff Head
(5/6/94) MK4 Fish Plant
(5/5/94) MS2 Quarry Point
(5/5/94) MS3 CloughPoint
(5/4/94) MD2 Wentworth Point
(5/4/94) MD3 Dodge Point
(5/4/94) MD4 Little Point
$43^{\circ} 50.50^{\circ} \mathrm{N}$
$43^{\circ} 55.50^{\circ} \mathrm{N}$
$43^{\circ} 56.000^{\prime} \mathrm{N}$
$43^{\circ} 59.40^{\circ} \mathrm{N}$
$43^{\circ} 56.25^{\prime} \mathrm{N}$
$43^{\circ} 59.25^{\prime} \mathrm{N}$
$44^{\circ} 01.10^{\prime} \mathrm{N}$

Eigure B. 3 Methods
Temperature and salinity data were collected on the three estuaries during May 4-6, 1994, at each of the cross-sections shown in Figure B.3.1 prefixed with 'M'. A Sea-Bird SBE 25 CTD was used. At each cross-section, between one and four lateral stations were established based on the width of the channel at that point. These are represented by their relative east-west position in the channel. On the Damariscotta, each station was occupied 6 times, at 2 hour intervals, over a semidiurnal tidal cycle. On the Sheepscot and Kennebec, each station was occupied 8 times, at 1.5 hour intervals, over a semidiurnal tidal cycle.

Tidal means of temperature, salinity and density are presented in side by side panels for each cross-section. Different line types denote lateral stations. To account for changing water depths, the data were reinterpolated using sigma coordinates based on the mean depth at each station prior to averaging.

Figure B. 6 September 1994 Tidal Means
Figure B.6.1 $\quad(9 / 29 / 94)$ SK5 Sasanoa River $\quad 69^{\circ} 48.00^{\prime} \mathrm{W}$
Figure B.6.2 $\quad(9 / 30 / 94)$ SK1 Cox Head $\quad 43^{\circ} 46.00^{\prime} \mathrm{N}$
Figure B.6.3
Figure B. 6.4
Figure B.6.5
(9/30/94) SK2 Phippsburg
$43^{\circ} 49.00^{\prime} \mathrm{N}$
(9/29/94) SK3 Hospital Point $\quad 43^{\circ} 53.10^{\circ} \mathrm{N}$
(9/29/94) SK4 Fish Plant $\quad 43^{\circ} 55.50^{\prime} \mathrm{N}$
(9/27/94) SS1 Barters Island $\quad 43^{\circ} 54.50^{\prime} \mathrm{N}$
(9/27/94) SS3 Clough Point $\quad 43^{\circ} 59.40$ ' N
Figure B.6.7
(9/29/94) SD1 Rutherford Island $43^{\circ} 50.75^{\prime} \mathrm{N}$
Figure B.6.8
(9/29/94) SD2 Wentworth Point $43^{\circ} 56.25^{\prime} \mathrm{N}$

Figure B. 6 Methods

Due to instrument failure, hydrography and current measurements for cruise 6 were made 4 weeks after the longitudinal surveys. Temperature and salinity data were collected on the three estuaries during September 26-30, 1994, at each of the cross-sections shown in Figure B.3.1 prefixed with 'S'. Collection methods were the same as for B. 3 (May) with the following exception: all of the stations were occupied 10 times, at 1.25 hour intervals, over a semidiurnal tidal cycle.

Figure B. 7 September. 1995
Hydrography data for the Kennebec, 1995, cruise appears in Figure A.7.

Cross-Section Locations:

May 4-6, 1994 and September 26-29, 1994

Figure B.3.1 Cross-section locations for May 4-6, 1994 (cruise \#3), are prefixed with 'M'. Cross-section locations for September 26-29, 1994 (cruise \#6) are prefixed with 'S'. Changes were made between cruises due to transport time, channel depth, and excessive currents for hand-lowering of the CTD. At each location, measurements were made at 1-4 lateral stations, depending on channel with, and are denoted in the data figures by their relative east-west position in the channel.

MK2:

Figure B.3.2 (5/6/94) Tidal Mean Hydrography v. Depth at Bluff Head

Figure B. 3.3 (5/6/94) Tidal Mean Hydrography v. Depth at Fish Plant

Figure B. 3.4 (5/5/94) Tidal Mean Hydrography v. Depth at Quarry Point

Figure B.3.5 (5/5/94) Tidal Mean Hydrography v. Depth at Clough Point

MO2:

Figure B.3.6 (5/4/94) Tidal Mean Hydrography v. Depth at Wentworth Point

Figure B. 3.7 (5/4/94) Tidal Mean Hydrography v. Depth at Dodge Point

Figure B. 3.8 (5/4/94) Tidal Mean Hydrography v. Depth at Little Point

Figure B. 6.1 (9/29/94) Tidal Mean Hydrography v. Depth at Sasanoa River

Figure B. 6.2 (9/30/94) Tidal Mean Hydrography v. Depth at Cox Head

Figure B. 6.3 ($9 / 30 / 94$) Tidal Mean Hydrography v. Depth at Phippsburg

SK3:

Figure B. 6.4 (9/29/94) Tidal Mean Hydrography v. Depth at Hospital Point

Figure B. 6.5 (9/29/94) Tidal Mean Hydrography v. Depth at Fish Plant

SS1:

Figure B.6.6 (9/27/94) Tidal Mean Hydrography v. Depth at Barters Island

Figure B. 6.7 (9/27/94) Tidal Mean Hydrography v. Depth at Clough Point

Figure B. 6.8 (9/26/94) Tidal Mean Hydrography v. Depth at Rutherford Island

Figure B. 6.9 (9/26/94) Tidal Mean Hydrography v. Depth at Wentworth Point

Figure C Current Data
Eigure C3_May. 1994 Tidal Means
Figure C.3.1 (5/6/94) MK2 Below Bluff Head
Figure C3.2 (5/6/94) MK4 Fish Plant
Figure C. 3.3 (5/4/94) MD2 Wentworth Point
Figure C.3.4 (5/4/94) MD3 Dodge Point
Figure C. $3.5 \quad(5 / 4 / 94)$ MD4 Little Point
Eigure C 3 Methods
See Figure B3 for explanation of stations and averaging. Data were collected with a RDI 1200 $\mathbf{k H z}$ Acoustic Doppler Current Profiter, and are presented in side by side panels for the lateral stations at each cross-section. Along channel and cross-channel components are denoted with different line types. Velocity components were rotated so that along channel corresponds to north-south flow following the approximate geographical orientation of these three estuaries.

Figure C. 6 September 1994 Tidal Means

Figure C.6.1 (9/29/94) SK5 Sasanoa River (see note in methods)
Figure C.6.2
(9/30/94) SK1 Cox Head
Figure C.6.3
(9/30/94) SK2 Phippsburg
Figure C.6.4
(9/29/94) SK3 Hospital Point
Figure C. 6.5
(9/29/94) SK4 Fish Plant
Figure C.6.6
(9/27/94) SSl Barters Island
Figure C.6.7
Figure C.6.8
(9/27/94) SS3 Clough Point
(9/29/94) SD1 Rutherford Island
Figure C.6.9
(9/29/94) SD2 Wentworth Point

Figure C. 6 Methods

Stations are the same as Figure B.6. Methods are the same as Figure C. 3 with one exception: along channel currents in the Sasanoa are represented by east-west flow, with westward currents flowing into the Kennebec.

Eigure C. 7 September 1995 Tidal Cuments
Figure C.7.1 (9/17/95) Phippsburg
Figure C.7. \quad (9/17/95) Above Bluff Head
Figure C.7.3
(9/17/95) Fish Plant
Figure C.7.4
(9/16/95) Chops Point
Figure C.7.5
(9/16/95) Twing Point
Figure C.7.6
(9/16/95) Green Point
Figure C. 7 Methods
Stations are the same as those in Table A.7. Measurements were made with an RDI 300 kHz Broad Band Acoustic Doppler Current Profiler in the center of the channel. Each station was occupied 4 times, at 3 hour intervals, with the exception of Bluff Head and Twing Point which were occupied 8 times at approximately one hour, twenty-five minute intervals.

Figure C.3.1 (5/6/94) Tidal Mean Velocity v. Depth below Bluff Head

Figure C. 3.2 (5/6/94) Tidal Mean Velocity v. Depth at Fish Plant

Figure C. 3.3 (5/4/94) Tidal Mean Velocity v. Depth at Wentworth Point

Figure C. 3.4 (5/4/94) Tidal Mean Velocity v. Depth at Dodge Point

Figure C. 3.5 (5/4/94) Tidal Mean Velocity v. Depth at Little Point

Figure C.6.1 (9/29/94) Tidal Mean Velocity v. Depth at Sasanoa R.

Figure C. 6.2 (9/30/94) Tidal Mean Velocity v. Depth at Cox Head

Figure C. 6.3 (9/30/94) Tidal Mean Velocity v. Depth at Phippsburg

Figure C. 6.4 (9/29/94) Tidal Mean Velocity v. Depth at Hospital Point

Figure C. 6.5 (9/29/94) Tidal Mean Velocity v. Depth at Fish Plant

Figure C. 6.6 (9/27/94) Tidal Mean Velocity v. Depth at Barters Island

Figure C. 6.7 ($9 / 27 / 94$) Tidal Mean Velocity v. Depth at Clough Point

Figure C. 6.8 (9/26/94) Tidal Mean Velocity v. Depth at Rutheriord Island

Figure C. 6.9 (9/26/94) Tidal Mean Velocity v. Depth at Wentworth Point

Ebb

Figure C. 7.1 (9/17/95) Velocity vs. Depth at Phippsburg

Figure C.7.2a (9/17/95) Velocity vs. Depth above Bluff Head

Flood

Flood

Late Flood

Figure C.7.2b (9/17/95) Velocity vs. Depth above Bluff Head

Figure C. 7.3 (9/17/95) Velocity vs. Depth at Fish Plant

Flood

Figure C.7.4 (9/16/95) Velocity vs. Depth at Chops Point

Ebb

Ebb

Late Ebb

Figure C.7.5a (9/16/95) Velocity vs. Depth at Twing Point

Figure C.7.5b (9/16/95) Velocity vs. Depth at Twing Point

Flood

Ebb

Flood

Figure C. 7.6 (9/16/95) Velocity vs. Depth at Green Point

Eigure D S4.Data

Figure D. 3.1 (5/2-4/94) Wentworth Point
Figure D.6.1
Figure D.6.2
Figure D.6. 3
(9/1-2/94) near Phippsburg (8/31-9/1/94) Barters Island (8/29-30/) Wentworth Point
$69^{\circ} 35.011^{\mathrm{W}} 43^{\circ} 56.21^{\prime} \mathrm{N}$ $69^{\circ} 46.16 \mathrm{~W} 43^{\circ} 44.81^{1} \mathrm{~N}$
$69^{\circ} 41.27 \mathrm{~W} 43^{\circ} 54.36^{\prime} \mathrm{N}$
$69^{\circ} 35.011^{\circ} \mathrm{W} 43^{\circ} 56.21^{\prime} \mathrm{N}$

Eigure D Methods

An Inner Ocean 54 Current Meter was anchored approximately 5 meters off the bottorn, using 3 cinder blocks for anchor, 310 " glass floats and a tag line tied to a lobster buoy. Measurements were taken for 1 minute out of every five, and recorded as 30 second averages. Current velocity, direction, temperature, salinity, sensor depth and sensor tilt are presented for each deployment.

Figure D.3.1 Data from S 4 moored 5 m off the bottom at Wentworth Point, beginning 20:23, 5/2/94, ending 16:33, 5/4/94.

Figure D.6.1 Data from S4 moored 5 m off bottom at Phippsburg, beginning $10: 35,9 / 1 / 94$, ending $8: 30,9 / 2 / 94$.

Figure D.6. 2 Data from S 4 moored 5 m off the bottom off Barters Island, beginning $7: 55,8 / 31 / 94$, ending 8:15, 9/1/94.

Figure D.6.3 Data from S 4 moored 5 m off the bottom at Wentworth Point, beginning 19:30, 8/29/94, ending $12: 45,8 / 30 / 94$.

[^0]: 荡

